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in the Coulomb gauge, 20, 115, 143
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Constant of the motion, 8, 61e, 134, 152¢, 200, 370
Contact interaction, 42
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field, 16, 122, 172, 295
interaction, 18, 122, 330, 401, 426, 435
interaction by exchange of photons, 403
potential, 16, 67¢, 172, 407
self-energy, 18, 71e, 201
Coulomb gauge, see also Hamiltonian (total): Lagrangians for electrodynamics:
Transformation
definition, 10, 113
electrodynamics in the Coulomb gauge, 10, 113, 121,169,439
relativistic Q.E.D. in the Coulomb gauge, 424, 431
Counting signals, see Photodetection signals
Covariant:
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formulation, 361
notation and equations, 10, 17, 364, 411, 449¢
Covariant Lagrangians:
for classical particles, 106
for coupled electromagnetic and Dirac fields, 451e
for the Dirac field, 449¢
for the electromagnetic field (standard Lagrangian), 106, 365
Fermi Lagrangian, 366
interaction Lagrangian, 106, 365
in the Lorentz gauge, 365, 369, 441e
Creation operator, see Annihilation and creation operators
Cross-section, see Scattering
Current:
density, 7, 101, 115, 410, 419
four-vector, 10, 365,411
of magnetization, 284
of polarization, 284
Cutoff, 124, 190, 200, 287
D
d'Alambertian, 10, 367
Damping (radiative), 71e, 76e
Darwin term, 440
Delta function (transverse), 14, 36, 38, 42, 64e, 120, 173, 231c¢
Density, see also Quasi-probability density
of charge, 7, 101, 309, 410, 419, 434, 454¢
of current, 7, 101, 115, 410, 419
Hamiltonian, 93, 106, 147¢e, 158e, 370
Lagrangian, 91, 101, 106, 113, 147e, 157e, 167¢, 365, 369, 441¢e
of magnetization, 42, 284, 285, 292
of polarization, 281, 292, 308, 329
Diamagnetic energy, 290, 293
Dipole-dipole interaction:
electric, 313
magnetic, 43
Dipole moment, see Electric dipole: Magnetic dipole moment
Dirac, see also Matter field; Spinors
delta function, 94
equation, 408, 449, 452¢
Hamiltonian, 410
matrices, 409
Discretization, 31
Dispacement, 282, 291, 292, 308, 310
Dynamical variables:
canonically conjugate, 34, 86, 93, 257, 258, 369



change of dynamical variables in the Hamiltonian, 86, 260
change of dynamical variables in the Lagrangian, 84
complex dynamical variables, 87, 90
for a discrete system, 81
for a field, 90
redundancy,109, 113, 154e, 157¢, 362
E
Effective (Hamiltonian), 435, 438
Einstein, 204
Electric dipole:
approximation, 270
interaction, 270, 288, 304, 306, 312, 313, 342
moment, 270, 288, 306, 343
self-energy, 312
wave, 71e
Electric field, see also Electromagnetic field: Expansion
in the Coulomb gauge, 117, 122, 172
longitudinal, 15, 64e, 117, 172, 283
of an oscillating dipole moment, 71¢, 353¢
in the Power-Zienau-Woolley picture, 295
total, 66e, 117, 172, 291, 295, 310, 330, 355¢
transverse, 21, 24, 27, 32, 64e, 117, 171, 287, 295, 310
Electromagnetic field, see also Expansion in normal variables: External field:
Quantization of the electromagnetic field
associated with a particle, 68e
free, 28, 58, 181, 221, 230e, 241e
mean value in the indefinite metric, 396
in real space, 7
in reciprocal space, 12
tensor F*, 17,106, 365, 378
Electromagnetic potentials, see also Free
(fields, potential): Gauge
covariant commutation reactions, 382
definition and gauge transformation, 9
evolution equations, 9, 10, 366, 367
four-vector potential, 10, 364, 376
mean value in the indefinite metric, 396, 406
retarded, 66¢
Electron, see also Matter field
classical radius, 75¢
elastically bound, 74e
g-factor, 439
Electron-positron pairs, 123, 413, 417
Elimination:



of a dynamical variable, 85, 154e, 157¢
of the scalar potential, 111
Emission (of photons), 344e, 348e, 349¢
Energy, see also Hamiltonian; Self-energy
conservation of, 8, 61e, 137, 200
Coulomb energy, 18, 114, 173, 283, 401, 403, 426
of the free field, 183, 378
negative energy states, 413
of the system field + particles, 8, 19, 116
of the transverse field, 26, 31
Equations, see Dirac; Hamilton's equations; Heisenberg: Lagrange's equations: Maxwell
equations; Newton-Lorentz equations; Poisson; Schrodinger
Equivalence:
between the A » p and E » r pictures, 272, 296, 316, 321, 337¢, 356¢
between the A *p and Z e VV pictures, 349
between relativistic Q.E.D. in the Lorentz and the Coulomb gauges, 424
between the various formulations of electrodynamics, 253, 300, 302

Expansion in a and at (orina and @ ):
of the electric and magnetic fields, 171, 241e
of the four-vector potential, 391
of the Hamiltonian and momentum in the Lorentz gauge, 382, 391
of the Hamiltonian and momentum of the transverse field, 172
of the transverse vector potential, 171
Expansion in normal variables:
of the electric and magnetic fields, 27, 28, 32
of the four-vector potential, 372, 376
of the Hamiltonian and momentum in the Lorentz gauge, 378, 379
of the transverse field angular momentum, 27, 48
of the transverse field Hamiltonian, 27, 31
of the transverse field momentum, 27, 31
of the transverse vector potential, 29, 31
External field, 141, 172, 178, 180, 198, See also Hamiltonian for particles in an external
field: Lagrangians for electrodynamics
External sources (for radiation), 24, 219, 314, 370, 372, 400, 418
F
Factored states, 207
Fermi:
golden rule, 323
Lagrangian, 366
Fermion, 99, 161e, 413,414
Fields (in general), see also Angular momentum: Energy; Hamiltonian (general
considerations); Lagrangian (general); Momentum; Quantization (general)
complex, 95



real, 90
transverse and longitudinal, 13, 37
Fierz, see Pauli-Fierz-Kramers transformation
Final, see Initial and final states of a process
Fock space, 31, 175
Fourier transform, 11, 12, 15, 56, 97
Four-vector:
current, 10, 365, 411
field energy-momentum, 379
potential, 10, 364, 376
Free (fields, potentials), 28, 58, 183, 205, 373, 376, 382,414
Fresnel mirror, 208
Functional derivative, 92, 126
G
Gauge, see also Coulomb gauge; Lorentz gauge; Poincare gauge
gauge transformation and phase of the matter field, 167¢, 449¢
invariance, 8, 17, 107, 269
transformation, 9, 13, 108, 255, 267, 270, 331, 368, 375, 397
Generalized coordinates:
change of, 86, 260
complex, 87, 88
real, 81, 84
Goppert-Mayer transformation, 269, 275, 304
Ground state:
of the quantized Dirac field, 417
of the radiation field, 186, 189, 252e, 385, 386, 394
H
Hamiltonian (general considerations), see also Effective, (Hamiltonian)
with complex dynamical variables, 88, 97, 154e, 157¢
for a discrete system, 83, 147¢
for a field, 93, 97, 148e
Hamiltonian and energy, 83, 136, 146e
in quantum theory, 89, 259
transformation of, 258, 261, 263
Hamiltonian of the particles:
Dirac Hamiltonian, 410
expression of, 144, 197
Pauli Hamiltonian, 432
physical meaning in various representations, 271, 297
of the quantized Dirac Field, 415
for two particles with opposite charges, 232¢
for two separated systems of charges, 313, 328
Hamiltonian for particles in an external field:
for a Dirac particle, 410



electric dipole representation (E ¢ 1), 271, 304, 320
Henneberger picture, 277
for an ion, 342¢
for the quantized Dirac field, 419
standard representation (A ¢ p), 144, 198, 266, 317
Hamiltonian for radiation coupled to external sources:
in the Couilomb gauge, 218
in the electric dipole representation, 314, 353¢
in the Lorentz gauge, 370, 400, 418
Hamiltonian (total):
in the Coulomb gauge, 20, 33, 116, 138, 173, 439
in the Coulomb gauge with external fields, 144, 174,198
of coupled Dirac and Maxwell fields, 419, 431, 451e
in the Power-Zienau-Wooley picture, 289, 292, 295, 329
Hamilton's equations:
for a discrete system, 83
for a field, 94, 132, 371
Heaviside function, 226
Heisenberg:

equation, 89 equations for a and at 179, 217, 249e, 420
equations for the matter fields, 99, 161e, 420
equations for the particle, 177
picture, 89, 176, 185, 218, 221, 382
relations, 241e, 248¢
Hennebcrger transformation, 275, 344e, 349¢
Hilbert space, 89, 387
Hole theory, 413
Hydrogen atom:
Lamb transition, 327
1s-2s two-photon transition, 324, 338e
|
Indefinite metric, see also Scalar potential
definition and properties, 387, 391, 445¢
and probabilistic interpretation, 390, 392
Independent variables, 95, 109, 121, 362, See also Redundancy of dynamical variables
Initial and final states of a process, 264, 271, 296, 300, 302, 317, 326, 337¢
Instantaneous, see also Nonlocality
Coulomb field and transverse field, 16, 21, 64e, 67¢, 122, 291, 292
interactions, 18, 122, 313, 330
Intensity correlations, 186 Intensity of light, 185
Interaction Hamiltonian between particles and radiation:
in the Coulomb gauge, 197, 232¢
in the electric dipole representation, 271, 307, 312, 315



in the Power-Zienau-Woolley representation, 290, 292, 296, 329
in relativistic Q.E.D., 419
Interactions, see Contact interaction; Coulomb: Dipole-dipole interaction; Electric
dipole; Instantaneous: Magnetic dipole moment: Quadrupole electric (momentum
and interaction): Retarded: Hamiltonian
Interference phenomena:
with one photon, 208, 210
quantum theory of light interference, 204
with two laser beams, 208, 212 with two photons, 209, 211
Interferences for transition amplitude, 213
Invariance, see also Covariant
gauge invariance, 9, 107, 167¢, 267
relativistic invariance, 10, 15, 106, 114
translational and rotational, 134, 153e, 200, 370
Ion (interaction Hamiltonian with the radiation field), 342¢
K
Kramers, see Pauli-Fierz-Kramers transformation
Kronecker (delta symbol), 94, 148e
L
Lagrange's equations:
with complex dynamical variables, 87, 96, 154¢
for a discrete system, 82, 129, 147¢
for the electromagnetic potentials, 104, 142, 150e, 151e, 366
for a field, 92, 96, 131, 147e, 150e
for a matter field, 157e, 167e, 367, 449¢
for the particles, 103, 142, 151e
Lagrangian (general), see also Density, Lagrangian: Functional derivative: Matter field
with complex dynamical variables, 87, 95, 154e, 157¢
of a discrete system, 81, 147¢
elimination of a redundant dynamical variable, 84, 154¢, 157¢
equivalent Lagrangians, 82, 92, 108, 256
of a field, 91, 95, 147¢
formalism, 79, 81
linear in velocities, 154e, 157¢
Lagrangians for electrodynamics, see also Covariant Lagrangians; Standard Lagrangian
in the Coulomb gauge, 113, 137
with external fields, 142, 143, 266, 271, 449¢
in the Power-Zienau-Woolley picture, 287
Lamb:
shift, 191
transition, 327
Least-action principle, 79, 81
Light intensity, 185
Linear response, 221, 352¢



Linear susceptibility, 221, 352¢
Locality, 12, 14, 15, 21, 103, 291, See also Instantaneous; Nonlocality
Localized systems of charges, 281, 304, 307
Longitudinal:
basis of longitudinal vector functions, 53
contribution of the longitudinal electric field to the energy, momentum and angular
momentum, 17, 19, 20
electric field, 15, 64e, 172, 283
normal variables, 374
photons, 384, 430 vector fields, 13
vector potential, 112, 255
Longitudinal vector potential:
in the Coulomb gauge, 16, 113
in the Lorentz gauge, 22
in the Poincare gauge, 332
Lorentz equation, 104, 178, See also Lorentz gauge: Subsidiary condition
Lorentz gauge, see also Subsidiary condition
classical electrodynamics in the Lorentz gauge, 364
definition, 9
relativistic Q.E.D. in the Lorentz gauge, 361, 419, 424, 453¢
M
Magnetic dipole moment:
interaction, 43, 288
orbital, 288
spin, 44, 197, 439
Magnetic field, 21, 24, 27, 32,42, 118, 171, See also Expansion
Magnetization:
current, 284
density, 42, 284, 292
Mass:
correction, 69¢e
rest mass energy, 432
Matter field:
Dirac matter field, 107, 366, 408, 414, 433, 451e, 454¢
quantization, 98, 161e, 361, 414
Schrodinger matter field, 157¢, 161e, 167¢
Maxwell equations, see also Heinsenberg: Normal variables of the radiation
covariant form, 17, 366
for the potentials, 9, 10, 366
quantum Maxwell equations, 179
in real space, 7
in reciprocal space, 12, 21
Mean value in the indefinite metric, 389, 396, 398, 406
Mechanical momentum, 20, 177, 271, 290



Mode, 24, 27, 374, See also Normal mode, Normal variables of the radiation: Expansion
Momentum, see also Commutation: Expansion in normal variables: Expansion in a and

at (orinaand @)

conservation, 8, 61e, 138, 200

contribution of the longitudinal field, 19, 20

of the Dirac field, 451e

of the electromagnetic field in the Lorentz

gauge, 370, 379

of a general field, 152¢

momentum and velocity, 20, 177, 271, 290

for a particle, 20, 177

of the particle + field system, 8, 20, 118, 139, 174, 199

of the Schrodinger field, 158e

of the transverse field, 19, 27, 31, 172, 193, 188
Multiphoton amplitudes (calculations in various representations), 316, 325, 338e, 344e,

348c, 349¢

Multipole:

expansion, 287

waves, 45, 55, 58, 60
N
Negative energy states, 413
Negative frequency components, 29, 184, 193,422
Newton-Lorentz equations, 7, 104, 178
Nonrelativistic:

approximation, 103, 122, 200

limit, 424, 432, 439
Nonresonant processes, 325, 356e
Nonlocality, 14, 15, 21, 151e, See also Instantaneous; Locality
Norm:

in the indefinite metric, 388, 445e, 447¢

negative, 385
Normal mode, 24, 27, 374, See also Normal variables of the radiation: Expanion
Normal order, 185, 195, 237¢
Normal variables of the radiation, see also Expansion in normal variables

a, and a . normal variables, 375, 376, 378

analogy with a wavefunction, 30

definition and expression, 23, 25, 29, 371
discretization, 31

evolution equation, 24, 26, 32, 66¢, 219, 371, 372
Lorentz subsidiary condition, 374

quantization, 33, 171

scalar and longitudinal normal variables, 372, 374, 379
transverse normal variables, 25, 29, 374



O
Observables, see Physical variables
Operators in the indefinite metric:
adjoint, 388
eigenvalues and eigenfunctions, 389, 445¢
hermitian, 388, 445e
Order:
antinormal, 237¢
normal, 185, 195, 238e
P
Parseval-Plancherel identity, 11
Particles see Conjugate momenta of the particle coordinates; Matter field: Hamiltonian
for particles in an external field
Particle velocities:
in the Coulomb gauge, 117, 177
in the Goppert-Mayer approach, 271, 306
in the Henneberger approach, 277
in the Power-Zienau-Woolley approach, 290, 295
Pauli:
exclusion principle, 163e, 413, 416
Hamiltonian, 432
matrices, 410, 437
Pauli-Fierz-Kramers transformation, 278, 429
Periodic boundary conditions, 31
Phase:
of an electromagnetic field mode, 208, 212, 243e
of a matter field and gauge invariance, 167¢, 449¢
Photodetection signals, see also Interference phenomena
double counting signals, 185, 209, 214
single counting signals, 184, 188, 206, 213
Photon, see also Annihilation and creation operators: Bose-Einstein distribution:
Interference phenomena; S-matrix: States of the radiation field; Wave-particle
duality
as an elementary excitation of the quantized radiation field, 30, 187
longitudinal and scalar photons, 384, 392, 403, 425, 430, 443e¢, 446¢
nonexistence of a position operator, 30, 50, 188
photon number operator, 187
single-photon states, 187, 205, 208, 210, 385
transverse photons, 186, 385
wavefunction in reciprocal space, 30
Physical meaning of operators:
general, 259, 269
in the Goppert-Mayer approach, 271, 306, 310
in the Henneberger approach, 277, 345¢



in the Power-Zienau-Woolley approach, 290, 292
Physical states, 384, 394, 396, 405, 423, 430, 443¢, See also Physical meaning of
operators: Physical variables; Subsidiary condition
Physical variables, see also Angular momentum: Electric field: Energy; Magnetic field:
Momentum; Particle velocities: Photodetection signals: Physical meaning of
operators; Position operator
in classical theory, 257
corresponding operators in various representations, 116, 117, 271, 277, 294, 306,
310
mean value in the indefinite metric, 396
in quantum theory, 259, 296
transformation of the corresponding operators, 260, 263
Planck, 1
Poincare gauge, 331, 333
Poisson:
brackets, 86
equation, 10, 345¢
Polarization:
current, 284
density, 281, 292, 308, 329
Polarization of the radiation:
polarization vector, 25, 376
sum over transverse polarizations, 36
Position operator, see also Photon; Translation operator
in the Henneberger approach, 276, 345¢
for the particles, 33, 118, 258
Positive:
positive energy slates, 412
positive frequency components, 29, 184, 193,422
Positron, 408, 413
Potential, see Longitudinal vector potential; Scalar potential: Transverse vector potential
Power-Zienau-Woolley transformation, 280,286, 328, 331
P-representation, 195, 206, 211, 236¢, 251e
Processes, see Absorption (of photons); Emission (of photons): Multiphoton
(amplitudes (calculations in various representations): Nonresonant processes;
Resonant, processes: Scattering: S-matrix
Q
Quadrupole electric (momentum and interaction), 288
Quantization (general), see also Matter field
with anticommutators, 98, 162e, 453e
canonical quantization, 34, 89, 258, 380
for a complex field, 98, 99, 161e
for a real field, 94, 148¢
second quantization, 414, 439



Quantization of the electromagnetic field:
canonical quantization in the Coulomb gauge, 119, 144
canonical quantization in the Power-Zienau-Woolley representation, 294
covariant quantization in the Lorentz gauge, 380, 383, 387, 391
elementary approach, 33
methods, 33, 34
Quantum electrodynamics (Q.E.D.):
in the Coulomb gauge, 169
in the Power-Zienau-Woolley picture, 293 rclativistic
Q.E.D. in the Coulomb gauge, 424,431
relativistic Q.E.D. in the Lorentz gauge, 361,419, 424, 453¢
Quasi-classical states of the field, see also Photodetection signals; Quasi-probability
density
definition, 192
graphical representation, 242¢
interferences with, 207, 209
production by external sources, 217, 404
properties, 194, 447¢
Quasi-probability density:
suited to antinormal order, 236e, 250¢
suited to normal order, 195, 206, 211, 236e, 250¢
R
Radiation emitted by an oscillating dipole, 71e, 352¢
Radiation Hamiltonian:
eigenstates of, 186

as a function of @ and at 172, 197, 241e, 296, 382
as a function of ¢ and a, 391
as a function of the conjugate variables, 116, 144, 290, 296, 370
as a function of the fields, 18, 312
as a function of the normal variables, 27, 31, 378
in the Lorentz gauge, 370, 378, 382, 391, 398
physical meaning, 292, 312
Radiation reaction, 68e, 74e
Radiative damping, 71e, 76e
Raman scattering, 326
Rayleigh scattering, 75¢, 198, 326
Reciprocal:
half-space, 102
space, 11, 36
Redundancy of dynamical variables, 109, 113, 154e, 157e, 362, See also independent
variables
Relativistic, see also Covariant; Covariant Lagrangian: Quantum electrodynamics

(QED.)



description of classical particles, 107
Dirac field, 366, 408, 414, 433, 451e, 454¢
modes, 123
Resonant:
processes, 316, 326, 349¢
scattering, 75¢
Retarded, see also Instantaneous
field, 21, 310, 330
potential, 66e
S
Scalar photons, 384,392,403,425,430,443¢, 446¢

Scalar potential, see also Expansion in a and a™ (or in a and @ ), Expansion in normal
variables
absence of a conjugate momentum with the standard Lagrangian, 109, 362
antihermiticity in the Lorentz gauge, 392
conjugate momentum in the Lorentz gauge, 369
in the Coulomb gauge, 16, 22, 67¢
elimination from the standard Lagrangian, 111
in the Poincare gauge, 333
Scalar product:
in a Hilbert space, 387
with the indefinite metric, 387, 395, 445¢
Scattering, see also Compton: Raman scattering; Rayleigh scattering: Thomson
scattering: Transition amplitudes
cross section, 74e, 346e
nonresonant scattering, 356e
in presence of radiation, 344e
process, 326
resonant scattering, 75¢
Schrodinger:
equation, 89, 157¢, 167¢, 176, 261, 263
representation, 89, 176, 219
Schrodinger field:
Lagrangian and Hamiltonian, 157e, 167¢
quantization, 161e
Schwarzchild, 79
Second quantization, 414
Selection rules, 199, 233e
Self-energy
Coulomb, 18, 71e, 201
dipole, 312
of the transverse polarization, 290, 329
S-matrix:



definition, 299, 317
equivalence in different representations, 298, 302, 321, 349e, 356¢
for one- and two-photon processes, 317, 349%¢
Sources (classical or external), 24, 217, 314, 370, 372, 400, 418
Spectral density, 191
Spin:
magnetic moment, 44, 197, 439
spin-statistics theorem, 99
Spin-1 particle, 49
Spin-orbit interaction, 440
Spinors:
Dirac spinors, 409, 412, 433
two-component Pauli spinors, 434
Squeezed states, 245¢, 246e, 248, 250
Standard Lagrangian:
difficulties for the quantization, 109
expression, 100
symmetries, 105
State space, see also Subsidiary condition
in the Coulomb gauge, 175
in the covariant formulation, 385
for scalar photons, 392, 443e
States of the radiation field, see also Physical states: Quasi-classical states of the field:
Vacuum
factored states, 205, 207
graphical representation, 241e
single-photon states, 187, 205, 208, 210, 385
squeezed states, 243e, 246e, 248e, 250e
two-photon states, 211
Subsidiary condition:
in classical electrodynamics, 9, 10, 22, 368, 370, 374, 442¢,443¢
in presence of interaction, 406, 421, 430
for the quantum free field, 384, 386, 394
Sudden switching-on of the potential, 264, 336e
Symmetries
and conservation laws, 134
of the standard Lagrangian, 105
T
Thomson scattering, 75¢, 198
Transformation, see also Physical variables; Unitary transformation; entries under
Gauge; Hamiltonian; Lagrangian
of coordinates and velocities, 85
from the Coulomb gauge to the Lorentz gauge (or vice versa), 63e, 425
Goppert-Mayer transformation, 269, 304



Henneberger transformation, 275, 344e, 349¢
Pauli-Fierz-Kramers transformation, 278,429
Power-Zienau-Woolley transformation, 280, 287, 328, 331
of the state vector, 261, 263, 268

Transition amplitudes
definition and calculation, 176, 271, 316,
337e, 338e, 346¢ identity in different pictures, 264, 269, 273, 297, 316, 321, 349e,

356e

interference between, 213

Transition matrix, 300, 356¢

Transition rate, 323

Translation operator:

for the a and a™ operators, 195, 308
for the a and a operators, 404, 425, 446¢
infinitesimal generators, 163e, 199, 383, 417
for the momentum of a particle, 305
for the position of a particle, 276
Transverse, see also Expansion; Instantaneous: Nonlocality: Photon
basis of transverse vector functions, 25, 37, 53
commutation relation for the transverse field, 119, 223, 230e
delta function, 14, 36, 38, 42, 64e, 120, 173, 231e
displacement, 283, 291, 295, 310
energy, momentum and angular momentum of the transverse field, 18, 19, 20, 27,
47,48, 174, 312
equations of motion of the transverse field, 21
electric field, 21, 24, 27, 32, 64e, 117, 171, 287, 295, 310
magnetic field, 21, 24, 27, 32,42, 118, 171
projector onto the subspace of transverse fields, 37
summation over transverse polarizations, 36
vector field, 13, 50
vector potential, 17, 29, 31, 119, 171, 223, 294, 377, 396
Transverse vector potential, see also Expansion: Instantaneous: Nonlocality
commutation relations, 119, 223, 230e
conjugate momentum, 115, 289
gauge invariance, 17
U
Unitary transformation, see also Translation operator
associated with a change of Lagrangian, 260, 262, 296
associated with a gauge transformation, 268, 271
on the Hamiltonian, 262, 276, 304, 343e
A"
Vacuum, 186, 189, 252e, 385, 386, 394
Vacuum fluctuations, 191, 199, 279



Vector potential, see Longitudinal vector potential: Transverse vector potential
Velocity, see Particle velocities
w
Wavcfunction of the photon, 30, 50, See also Photon
Wavelength scale, 202, See also Approximation: Compton
Wave-particle duality, 204, 215
Waves:
multipole waves, 45, 55
traveling plane waves, 28
Woolley, see Power-Zienau-Woolley transformation
Z
Zienau, ,see Power-Zienau-Woolley transformation



Introduction

The electromagnetic field plays a prominent part in physics. Without
going back to Maxwell, one can recall for example that it is from the study
of light that the Planck constant and the ideas of wave-particle duality
arose for the first time in physics. More recently, the electromagnetic field
has appeared as the prototype of quantum gauge fields.

It is therefore important to develop a good understanding of the
dynamics of the electromagnetic field coupled to charged particles, and in
particular of its quantum aspects. To this end, one must explain how the
electromagnetic field can be quantized and how the concept of photon
arises. One must also specify the observables and the states which describe
the various aspects of radiation, and analyze the Hamiltonian which
governs the coupled evolution of photons and atoms. It is to the study of
these problems that this volume is devoted.

The quantization of the electromagnetic field is the central problem
around which the various chapters are organized. Such a quantization
requires some caution, owing to the gauge arbitrariness and to the redun-
dancy associated with the vector and scalar potentials. As a result, we will
treat these problems at several levels of increasing difficulty.

In Chapter I, we begin with the Maxwell-Lorentz equations which
describe the evolution of an ensemble of charged particles coupled to the
electromagnetic field and show that a spatial Fourier transformation of
the field allows one to see more clearly the actual independent degrees of
freedom of the field. We introduce in this way the normal variables which
describe the normal vibrational modes of the field in the absence of
sources. Quantization then is achieved in an elementary fashion by quan-
tizing the harmonic oscillators associated with each normal mode, the
normal variables becoming the creation and annihilation operators for a
photon.

The problem is treated again in a more thorough and rigorous fashion
in Chapter II, starting with the Lagrangian and the Hamiltonian formula-
tion of electrodynamics. One such approach allows one to define unam-
biguously the canonically conjugate field variables. This provides also a
straightforward method of quantization, the canonical quantization: two
operators whose commutator equals i/ then represent the two correspond-

1



Preface

The spectacular development of new sources of electromagnetic radia-
tion spanning the range of frequencies from rf to the far ultraviolet (lasers,
masers, synchrotron sources, etc.) has generated considerable interest in
the interaction processes between photons and atoms. New methods have
been developed, leading to a more precise understanding of the structure
and dynamics of atoms and molecules, to better control of their internal
and external degrees of freedom, and also to the realization of novel
radiation sources. This explains the growing interest in the low-energy
interaction between matter and radiation on the part of an increasing
number of researchers drawn from physics, chemistry, and engineering,.
This work is designed to provide them with the necessary background to
understand this area of research, beginning with elementary quantum
theory and classical electrodynamics.

Such a program is actually twofold. One has first to set up the
theoretical framework for a quantum description of the dynamics of the
total system (electromagnetic field and nonrelativistic charged particles),
and to discuss the physical content of the theory and its various possible
formulations. This is the subject of the present volume, entitled Photons
and Atoms— Introduction to Quantum Electrodynamics. One has also to
describe the interaction processes between radiation and matter (emission,
absorption, scattering of photons by atoms, etc.) and to present various
theoretical methods which can be used to analyze these processes (per-
turbative methods, partial resummations of the perturbation series, master
equations, optical Bloch equations, the dressed-atom approach, etc). These
questions are examined in another volume entitled Interaction Processes
between Photons and Atoms. The objectives of these two volumes are thus
clearly distinct, and according to his interests and to his needs, the reader
may use one volume, the other, or both.

An examination of the topics presented here clearly shows that this
book is not organized along the same lines as other works treating
quantum electrodynamics. In fact, the majority of the latter are addressed
to an audience of field theorists for whom such ideas as covariance,
relativistic invariance, matter fields, and renormalization, to name a few,
are considered as fundamentals. On the other hand, most of the books
dealing with quantum optics, and in particular with laser optics, treat the
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fundamentals of electrodynamics, as well as the problems posed by
quantization of radiation, rather succinctly. We have chosen here an
approach between these two, since there seems to be a real need for such
an intermediate treatment of this subject.
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2 Introduction

ing classical conjugate variables. We show nevertheless that such a theoret-
ical approach is not directly applicable to the most commonly used
Lagrangian, the standard Lagrangian. This is due to the fact that the
dynamical variables of this Lagrangian, the vector and scalar potentials,
are redundant. The most simple way of resolving this problem, and then
quantizing the theory, is to choose the Coulomb gauge. Other possibilities
exist, each having their advantages and disadvantages; these are examined
later in Chapter IV (Poincaré gauge) and Chapter V (Lorentz gauge).

Many of the essential aspects of quantum electrodynamics in the
Coulomb gauge are discussed in detail in Chapter I11. These include the
quantum equations of motion for the coupled system charges + field;
the study of the states and observables of the free quantized field, of the
properties of the vacuum, and of coherent states; and the analysis of
interference and wave—particle duality in the quantum theory of radiation.
We also examine in detail the properties of the Hamiltonian which
describes the coupling between particles and photons.

This last subject is treated in more detail in Chapter 1V, which is
devoted to other equivalent formulations of electrodynamics derived from
the Coulomb gauge. We show how it is possible to get other descriptions
of electrodynamics, better adapted to this or that type of problem, either
by changing the gauge or by adding to the standard Lagrangian in the
Coulomb gauge the total derivative of a function of the generalized
coordinates of the system, or else by directly performing a unitary
transformation on the Coulomb-gauge Hamiltonian. Emphasis is placed
on the physical significance the various mathematical operators have in
the different representations and on the equivalence of the physical
predictions derived from these various formulations. It is here that a
satisfactory understanding of the fundamentals of quantum electrodynam-
ics is essential if one is to avoid faulty interpretations, concerning for
example the interaction Hamiltonians A - por E - r.

From the point of view adopted in Chapters II and IV, the symmetry
between the four components of the potential four-vector is not main-
tained. The corresponding formulations are thus not adaptable to a
covariant quantization of the field. These problems are dealt with in
Chapter V, which treats the quantization of the field in the Lorentz gauge.
We explain the difficulties which arise whenever the four components of
the potential are treated as independent variables. We point out also how
it is possible to resolve this problem by selecting, using the Lorentz
condition, a subspace of physical states from the space of the radiation
states.

We mention finally that, with the exception of the complements of
Chapter V, the particles are treated nonrelativistically and are described
by Schrodinger wave functions or Pauli spinors. Such an approximation is
generally sufficient for the low-energy domain treated here. In addition,
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the choice of the Coulomb gauge, which explicitly yields the Coulomb
interaction between particles which is predominant at low energy, is very
convenient for the study of bound states of charged particles, such as
atoms and molecules. This advantage holds also for the other formulations
derived from the Coulomb gauge and treated in Chapter IV. A quantum
relativistic description of particles requires that one consider them as
elementary excitations of a relativistic matter field, such as the Dirac field
for electrons and positrons. We deal with these problems in two comple-
ments in Chapter V. We show in these complements that it is possible to
justify the nonrelativistic Hamiltonians used in this volume by considering
them as “effective Hamiltonians” acting inside manifolds with a fixed
number of particles and derived from the Hamiltonian of relativistic
quantum electrodynamics, in which the number of particles, like the
number of photons, is indeterminate.

This volume consists of five chapters and nineteen complements. The
complements have a variety of objectives. They give more precision to the
physical or mathematical concepts introduced in the chapter to which they
are joined, or they expand the chapter by giving examples of applications,
by introducing other points of view, or by taking up problems not studied
in the chapter. The last complement in each chapter contains worked
exercises. A short, nonexhaustive bibliography is given, either in the form
of general references at the end of the chapter or complement, or in the
form of more specialized references at the foot of the page. A detailed list
of the books, cited by the author’s name alone in the text, appears at the
end of the volume.

It is possible to read this volume serially from beginning to end. It is
also possible, however, to skip certain chapters and complements in a first
study.

If one wishes to get a flavor of field quantization in its simplest form,
and to understand the particle and wave aspects of radiation and the
dynamics of the system field + particles, one can read Chapter I, then
Chapter 1II and its Complement A;;;. Reading Complements A, and B},
can also give one a simple idea of the electric dipole approximation and of
the equivalence of the interaction Hamiltonians A - p and E - r for the
study of one- or two-photon processes.

A graduate student or researcher wanting to deepen his understanding
of the structure of quantum electrodynamics and of the problems tied to
the gauge arbitrariness, should extend his reading to Chapters IL, IV, and
V and choose those complements which relate best to his needs and his
area of interest.






CHAPTER 1

Classical Electrodynamics:
The Fundamental Equations and the
Dynamical Variables

The purpose for this first chapter is to review the basic equations of
classical electrodynamics and to introduce a set of dynamical variables
allowing one to characterize simply the state of the global system field +
particles at a given instant.

The chapter begins (Part A) with a review of the Maxwell—Lorentz
equations which describe the joint evolution of the electromagnetic field
and of a set of charged particles. Some important results concerning the
constants of motion, the potentials, and gauge invariance are also reviewed.

With a view to subsequent developments, notably quantization, one
then shows (Part B) that classical electrodynamics has a simpler form in
reciprocal space, after a Fourier transformation of the field. Such a
transformation allows a simple decomposition of the electromagnetic field
into its longitudinal and transverse components. It is then evident that the
longitudinal electric field is not a true dynamical variable of the system,
since it can be expressed as a function of the positions of the particles.

The following part (Part C) introduces linear combinations of the
transverse electric and magnetic fields in reciprocal space which have the
important property of evolving independently in the absence of particles
and which then describe the normal vibrational modes of the free field.
These new dynamical variables, called normal variables, play a central role
in the theory, since they become, after quantization, the creation and
annihilation operators for photons. All the field observables can be ex-
pressed as a function of these normal variables (and the particle variables).

The chapter ends finally (Part D) with a discussion of the various
possible strategies for quantizing the foregoing theory. One simple, eco-
nomic method, albeit not very rigorous, consists of quantizing each of the
“harmonic oscillators” associated with the various normal modes of
vibration of the field. One then gets all the fundamental commutation

5
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relations necessary for Chapter III. The problem is approached in a more
rigorous manner in Chapter 11, beginning with a Lagrangian and Hamilto-
nian formulation of electrodynamics.

Finally, Complement B; compiles some results relative to the angular

momentum of the electromagnetic field and to the multipole expansion of
the field.
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A—THE FUNDAMENTAL EQUATIONS IN REAL SPACE

1. The Maxwell-Lorentz Equations

The basic equations are grouped into two sets. First, the Maxwell
equations rtelate the electric field E(r. r) and the magnetic field B(r, 1) to
the charge density p(r, ) and the current j(r, 1):

V-E(r,t):zl—p(r. 1) (A.1.3)
0

V:B(rt) =0 (A.1.b)

VxE(r.I):—% B(r, 1) (A.1.¢)

VvV x B(r, t)—i2 (A.1.d)

-~
)|”§J

Next, the Newron—Lorentz equations describe the dynamics of each parti-
cle «, having mass m_, charge ¢,, position r(¢), and velocity v (), under
the influence of electric and magnetic forces exerted by the fields

d?
e 1) = GLE(). 1) + v,(1) x B(r,(1). 0]. (A.2)
The equations (A.2) are valid only for slow, nonrelativistic particles

(v, <o)
From (A.l.a) and (A.1.d) one can show that

~
)l‘\)

p(r H+V-jir=90. (A.3)

Such an equation of continuity expresses the local conservation of the
global electric charge,

0= Jd3r p(r, 1). (A.4)

The expression of p and j as a function of the particle variables is

p(r, 1) = 3 g, 0[r —r,(1)] (A.5.a)

) =3 q,v,(0)0[r — r(n]. (A.5.b)

One can show that Equations (A.5) satisfy the equation of continuity
(A.3).
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Equations (A.1) and (A.2) form two sets of coupled equations. The
evolution of the field depends on the particles through o and j. The
motion of the particles depends on the fields E and B. The equations (A.1)
are first-order partial differential equations, while the equations (A.2) are
sccond-order ordinary differential equations. It follows that the state of
the global system, field + particles, is determined at some instant ¢, by
giving the fields E and B at all points r of space and the position and
velocity r, and v, of each particle a:

UEAr, 1), B(r, 1), 1,(¢0), vi(t0) } . (A.6)

It is important to note that in the Maxwell equations (A.1), r is not a
dynamical variable (like r,) but a continuous parameter labeling the field
variables.

2. Some Important Constants of the Motion

Starting with Equations (A.1) and (A.2) and the expressions (A.5) for p
and j, one can show (see Exercise 1) that the following functions of E, B,
I, and v:

H = Z%ml vi(1) + %Jd3r[E2(r, 1)+ B )] (A7
P=>mv()+ ¢ fd"’r E(r, ) x B(r, 1) (A.8)
J =), x myv,(t) + g Jd3rr x [E(r, 1) x B(r, )] (A.9)

are constants of the motion, that is, independent of 1.

H is the total energy of the global system field + particles, P is the total
momentum, and J the total angular momentum. The fact that these
quantities are constants of the motion results from the invariance of the
equations of motion with respect to changes in the time origin, the
coordinate origin, and the orientation of the coordinate axes. (The connec-
tion between the constants of the motion and the invariance properties of
the Lagrangian of electrodynamics will be analyzed in Complement B;).

3. Potentials— Gauge Invariance

Equations (A.l.b) and (A.1.c) suggest that the fields E and B can
always be written in the form
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B(r, 1) =V x A(r, 1) (A.10.a)
Er ) = — -E%A(r, 1) — VU, 1) (A.10.b)

where A is a vector field, called the vector potential, and U a scalar field
called the scalar potential. A first advantage in introducing A and U is that
the two Maxwell equations (A.1.b) and (A.1.c) are automatically satisfied.
Other advantages will appear in the Lagrangian and Hamiltonian formu-
lations of electrodynamics (see Chapter 1I).

Substituting (A.10) in Maxwell’s equations (A.l.a) and (A.1.d), one gets
the equations of motion for A and U

1 ¢
AU(r, 1) = —F—p(r,t)—V°EA(r,t) (A.11.a)
0 3

1 &

! j(r-f)—V[V-A(r,1)+;13%U(r,t)] (A.11.b)
’ (

2
&g C

which are second-order partial differential equations and no longer first-
order as in (A.1). Actually, since d2U/dt* does not appear in (A.11.a),
this equation is not an equation of motion for U, but rather relates U to
dA/dt at each instant. The state of the field is now fixed by giving A(r, ¢,)
and JA(r, t,)/dt for all r.

It follows from (A.10) that E and B are invariants under the following
gauge transformation:

A(r, 1) > A'(r, 1) = A(r, t) + VF(r. 1) (A.12.a3)

Ur.ty - U'(r, 1) = U, t) — %F(r,t) (A.12.b)

where F(r, t) is an arbitrary function of r and ¢. There is then a certain
redundancy in these potentials, since the same physical fields E and B can
be written with many different potentials A and U. This redundancy can
be reduced by the choice of one gauge condition which fixes v - A (the
value of ¥ X A is already determined by (A.10.a)).

The two most commonly used gauges are the Lorentz gauge and the
Coulomb gauge.

(1) The Lorentz gauge is defined by

1
VAR D+ = 2 U = 0. (A.13)

¢
l
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One can prove that it is always possible to choose in (A.12) a function F
such that (A.13) will be satisfied for A’ and U’. In the Lorentz gauge, the
equations (A.11) take a more symmetric form:

OuU(r. 1) :Fip(r, 1) (A.14.3)
‘0

OA(r, t) =

i(r. ) (A.14.b)

2
&g ¢

where 0 = 92/c*31> — A is the d’Alembertian operator. This is due to
the fact that the Maxwell’s equations on one hand and the Lorentz
condition on the other are relativistically invariant, that is, they keep the
same form after a Lorentz transformation. Using covariant notation,
Equations (A.13) and (A.14) can be written

Y 0,4 =0 (A.15)
u
o
with fu:{lé.v} A“:{E,A}
¢ Ct ¢
and
Yoo, M4 = : 5 7 (A.16)
. o ¢°
with J ={cpj}

where A* and j* are the four-vectors associated with the potential and the
current respectively.

(i) The Coulomb (or radiation) gauge is defined by
V-Ar)=0 (A.17)

Equations (A.11) then become

AU 1) = — %p(r, 0 (A.18.2)
4]

[ s
j(r,t)——zV%U(r,t). (A.18.b)
¢ ¢

OA(, 1) =

a2
&g €

Equation (A.18.a) is Poisson’s equation for U. The covariance is lost, but
other advantages of the Coulomb gauge will be seen in the subsequent
chapters.
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B—ELECTRODYNAMICS IN RECIPROCAL SPACE

1. The Fourier Spatial Transformation—Notation

Let &(k, 1) be the Fourier spatial transform of E(r, ). Then E and &
are related through the following equations:

&k 1) = Jd% E(r, 1) e *r (B.1.2)

1
(2 m)*?

E(r, 1) =

e Jd3k &k, 1) e (B.1.b)

In Table I the notations used for the Fourier transforms of various other
physical quantities are shown. Block letters are used for the quantities in
real space, and script ones for the same quantities in reciprocal space.

TABLE 1
Er 1)~ &k 1)
B(r, 1) — Ak, 1)
Alr, 1) oAk, 1)
Ulr, ) Uk 1)
p(r, 1) < p(k, 1)
) ejk .

Since E(r, 1) is real, it follows that
Xk ty=86(—Kk1). (B.2)

In this treatment one frequently uses the Parseval—Plancherel identity

jd3r F*(r) G(r) = jd3k F *k) 9(k) (B.3)

where % and ¢ are the Fourier transforms of F and G. as well as the fact
that the Fourier transform of a product of two functions is proportional to
the convolution product of the Fourier transforms of these two functions:

1 ’ 7 ’ —
Rk de% F(r) G(r — 1) < F#(k) 9(K) (B.4)
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Table II lists some Fourier transforms that are used throughout this book

TaABLE 11
1 - 1 1
dnr (2 m)3? k2
r 1 — ik
dnr®  Qn)¥? k2
or — 1) (7;)3_/2 e ikra

Finally, to simplify the notation, we write t, in place of dr,(7)/dz, E in
place of dKE(r, 1)/d¢, & in place of 3°€(k, t)/3t?,..., whenever there is
no chance of confusion.

2. The Field Equations in Reciprocal Space

Since the gradient operator ¥ in real space transforms into multiplica-
tion by ik in reciprocal space, Maxwell’s equations (A.1) in reciprocal
space become

1

k& =—p (B.5.2)
&g

k-2 =0 (B.5.b)

ikx&=—2 (B.5.c)

Kk x B =Lty (B.5.d)
¢ gy C”

It is apparent in (B.5) that (k) and %#(k) depend only on the values of
&(k), #(k), p(k), and j(k) at the same point k. Maxwell’s equations,
which are partial differential equations in real space, become strictly local
in reciprocal space, which introduces a great simplification.

The equation of continuity (A.3) is now written

ik /+p=0. (B.6)
The relationships between the fields and potentials become

{ A =1k x of (B.7.a)
& = — o — iku (B.7.b)

Il
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the gauge transformation (A.12)

oA >d =+ iKF (B.8.2)
USU =U— F (B.8.b)

and the equations for the potentials (A.11)

1 .
kzﬁll:F—p%-ik'&i (B.9.a)
0

Ld i ,'—ik(ik-&i+iﬂ}>. (B.9.b)
4 4

2
o C

3. Longitudinal and Transverse Vector Fields

By definition, a longitudinal vector field V| (r) is a vector field such that

VxVi@=0. (B.10.a)

which, in reciprocal space, becomes
ik x ¥ (k) =0. (B.10.b)
A transverse vector field V, (r) is characterized by

{V-VL(r)zo (B.11.a)
ik-v,(k)=0. (B.11.b)

Comparison of (B.10.a) and (B.10.b) or (B.11.a) and (B.11.b) shows that
the name longitudinal or transverse has a clear geometrical significance in
reciprocal space: for a longitudinal vector field, ¥7 (k) is parallel to k for
all k; for a transverse vector field, ¥~, (k) is perpendicular to k for all k.

It is important to note that a vector field is longitudinal [or transverse]
if and only if (B.10) [or (B.11)] are satisfied for all r or all k. For example,
in the presence of a point charge at r,, ¥ - E is, according to (A.1.a), zero
everywhere except at r_, where the particle is located. In the presence of a
charge, E is therefore not a transverse field. This is even more evident in
reciprocal space, since k - & is then proportional to e '*™, which is
clearly nonvanishing everywhere.

Working in reciprocal space allows also a very simple decomposition of
all vector fields into longitudinal and transverse components:

1(k) = k) + v k). (B.12)
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At all points k, ¥7,(k) is gotten by projection of ¥"(k) onto the unit vector
k in the direction k:

k = Kk/k. (B.13)

One thus has
V() =[x - ¥ (K)] (B.14.a)
{ Vi(K) = ¥(K) — ¥ (K) (B.14.b)

V,(r) and V, (r) are then gotten by a spatial Fourier transformation of
(B.14).

Remarks

() In reciprocal space, the relationship which exists between a vector field
¥"(k) and its longitudinal or transverse components is a local relationship. For
example, one can show from (B.14) that

ki k;
ACED) <o - k—) ¥(k) (B.15)

where i, j = x, y, z. Each component of ¥ 1 (k) at point k depends only on the
components of ¥"(k) at the same point k. By Fourier transformatiors, Equation
(B.15) then becomes, using (B.4),

V=Y JdJ’r’ IHr — 1) V(') (B.16)
J

where

54 — ! 3 ikorf 5 %
o0 = s | k(0 -

n2 i
= 51’] 5(1-) + ¢ _I_de*k elk.ri

cr ey (2 n)? k2

1 (‘32

= 9y 0(r) + 4ner, ér;

1 (B.17.2)
p

8,7 (r) is called the “transverse §-function”. The presence of the last term in
(B.17.2) shows that the relationship between V L (r) and V(v) is not local: V| (r)
depends on the values V(r’) of V at all other points r’. Note also that the
calculation of the last term in (B.17.a) needs special caution at r = 0. The
second derivative of 1/r must be calculated using the theory of distributions
and contains a term proportional to 8,,8(r). The calculation, presented in detail
in Complement A, leads to

2

IHr) = 3

C. 1 . 3rr
0;; 0(r) — e 0 — (B.17.b)
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(ii) The decomposition of a vector field, arising from a four-vector or from an
antisymmetric four-tensor, into longitudinal and transverse components is not
relativistically invariant. A vector field that appears transverse in a Lorentzian
frame is not necessarily transverse in another Lorentzian frame.

(iii) Even though the separation (B.12) introduces nonlocal effects in real space
and is no longer relativistically invariant, it is nonetheless interesting in that it
simplifies the solution of Maxwell’s equations. In effect, as will be seen in the
following subsections, two of the four Maxwell equations establish only the
longitudinal part of the electric and magnetic fields, whereas the other equa-
tions give the rate of variation of the transverse fields. Such an approach then
allows one to introduce a convenient set of normal variables for the transverse
field.

4. Longitudinal Electric and Magnetic Fields

Return to Maxwell’s equations. It is clear now that the first two
equations (B.5.a) and (B.5.b) give the longitudinal parts of & and #. The
second equation clearly shows that the magnetic field is purely transverse:

B =0=B. (B.18)

The first equation (B.5.2) relates the longitudinal electric field &, (k) to the
charge distribution p(k):

810 = = =o0 3 (B.19)

and & (k) appears then as the product of two functions of k whose
Fourier transforms are

p(k) < p(r) (B.20.a)

i k_emntr

—gpf—» Tneg 7 (B.20.b)
Using (B.4), one then has
1 3 r—r
E(r 1) = T jd rp(r, f)m
Ly g 50 (B.21)

:47rsoa Ir —r ()
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It thus appears that the longitudinal electric field at some time ¢ is the
Coulomb field associated with p and calculated as if the density of charge
p were static and assumed to have its value taken at ¢, i.e., the instanta-
neous Coulomb field.

It is important to note that this result is independent of the choice of
gauge, since it has been derived directly from Maxwell’s equations for the
field E and B without reference to the potentials.

The fact that the longitudinal electric field instantly responds to a
change in the distribution of charge does not imply the existence of
perturbations traveling with a velocity greater than that of light. Actually,
only the total electric field has a physical meaning, and one can show that
the transverse field E, also has an instantaneous component which
exactly cancels that of E;, with the result that the total field remains
always a purely retarded field. This point will be discussed again later.

Consider now the longitudinal parts of (B.5.c) and (B.5.d). The two
terms of (B.5.c) are transverse. The longitudinal part of (B.5.d) is written

. 1 .

Taking the scalar product of (B.22) with k, and using (B.19) and the fact
that k - 4, = k - 4 one gets

p+ik-j=0 (B.23)

which is just the expression of the conservation of charge (B.6) and thus
conveys nothing new.

Remarks

(i) From equation (A.10.b) or (B.7.b) connecting the electric field to the
potentials, it follows that
E, = A, (B.24.2)
E,=—-A, -VU. (B.24.b)
In the Coulomb gauge, one has A = 0, with the result that
Ay=0 - E = -VU. (B.25.a)
It follows that the longitudinal and transverse parts of E are associated, in the
Coulomb gauge, with U and A respectively. Comparison of (B.25.a) and (B.21)

shows that, in the Coulomb gauge, U is nothing more than the Coulomb
potential of the charge distribution:

A =0 o U =— jd%’ P D) (B.25 )
‘ 4 1&g, [r — 1|
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The same result can be gotten directly from Equation (A.18.a). The solution of
this Poisson equation, which tends to zero as |r| = o, is nothing more than
(B.25.b).

(ii) It is clear from (B.8.a) that a gauge transformation does not change A | . It
follows that the transverse vector potential A | is gauge invariant:

A=A, (B.26)

(iii) Maxwell’s equations are presented here in two sets: (A.l.a) and (A.lb)
give the longitudinal fields, and (A.1.c) and (A.1.d) give the rate of variation of
the transverse fields [§B.6]. This grouping is different from the one used in
relativity, where Equations (A.1.b) and (A.l.c) on one hand, and (A.l.a) and
(A.1.d) on the other, are combined in two covariant equations

(’MF‘.‘,A—G‘,FW%—E‘DFM:O HFEVED (B.27.a)
Yo, P = ! sJ° (B.27.b)
p & C
where
F,=0¢,4,~-¢,4, (B.28)

is the electromagnetic field tensor, 4, the potential four-vector, and j, the
current four-vector.

5. Contribution of the Longitudinal Electric Field to the Total Energy,
to the Total Momentum, and to the Total Angular Momentum

One now uses (B.19) for & (k) to evaluate the contribution of the
longitudinal electric field to various important physical quantities.

a) THE TOTAL ENERGY

The Parseval—Plancherel identity (B.3) allows one to write
b0 3 b0 3
> drE-E=7 d’k&* - €. (B.29)
One then replaces & by &, + &, and uses &, €, = 0. This yields
3 ¢ 3
%jd% E? = _29Jd3k\<sq(k) > + %jd%\(&(k) |>. (B.30)

The first term in (B.30) is the contribution H,,,, of the longitudinal
electric field to the total energy given in (A.7):

Hlong = %)_ jwd?)k l éa”(k) l2 = 8_20' \[dSr E:Hz(r) (B31 .a)
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while the second, when added to the magnetic energy, gives the contribu-
tion H,,, of the fields E, and B:

trans

€
Hopns = ﬂd%[l 8,001 + ¢ | BK) ']

- 8—2‘) J & r[EX() + & BX(D)]. (B.31.b)

Inserting the expression (B.19) for & (k) in (B.31.a), one gets

1 k
Hions = 37 f &k p*(9 23 (B.32)

which can finally be written using (B.3) and (B.4) as

1 “d%di‘r’ P p(r) (B.33)

_87rso ir — 1|

long

H)o,, is nothing more than the Coulomb electrostatic energy of the system
of charges. Finally, one calculates H,,, for a system of point charges. For
this it is convenient to use the expression

q“ —ik.re

for the Fourier transform of the charge distribution given in (A.5.a).
Substituting (B.34) in (B.32), one gets

2 .
qa d3k q,q e ik.(rg—rg)
Hy. =Veu =2 —m— | — S A I IV 1] —
fong = 7 Coul §280(2n)3fk2 +a;,3280(27t)3f k=

(B.35)

The first term of (B.35) can be written ¥ ¢¢,, where

e = i [ B.36
Coul 2 80(2 7'[)3 kz ( . )

is the Coulomb self energy of the particle « (in fact, infinite, unless one
introduces a cutoff in the integral on k). The second term is nothing more
than the Coulomb interaction between pairs of particles (a, ), so that
finally

1 4, 4
8meg o5 [0, — 15|

Hlong = VCoul = Z Séoul + (B37)
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In conclusion, one has seen in this subsection that the total energy
(A.7) of the system can be written

1 .
H = Z 5 m, r: + VCoul + leans (B38)

and appears as the sum of three energies: the kinetic energy of the
particles (first term), their Coulomb energy (second term), and the energy
of the transverse field (third term). As in the preceding subsection, these
results are independent of the choice of gauge.

b) THE TOTAL MOMENTUM

One substitutes E, + E for E in the second term of (A.8). The total
momentum of the field appears then as the sum of two contributions, Py,
and P, given by

Pione = o jd;*r E,(r) x B(r) = ¢ jd3k &M (k) x B(k)

(B.39.a)

=~
|

wans = €0 j d3 E (r) x B(r) = ¢ jd3k &E*(Kk) x B(K).
(B.39.b)

Using (B.19) for &, the relationship (B.7.a) between # and &7, and the
identity

ax(bxc)z(a-c)b—(a'b)c (B.40)
one can transform (B.39.a) into

Dok
P, = o Jd%i 7{‘-‘5 « (ik x o7)
&

0

Il

jd3k o[ — k(e - )] (B.41)

The factor in brackets in (B.41) is nothing more than the transverse
component of &/, with the result that P, takes the simpler form

Plong = \[d:‘k p* ML = j‘d3r pAJ. = Z qa Ai(ra) (B42)

where (A.5.a) has been used for p. As before, this result is independent of
the choice of gauge, since A |, is gauge invariant [see (B.26)].
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Finally, the total momentum P given in (A.8) can be written

P = Z [mat ia + d. Al(rm)] + Ptrans (B43)

and is the sum of the particle mechanical momenta m f,, the longitudinal
field momentum ¥ g,A | (r,), and the momentum of the transverse field.
Equation (B.43) suggests that one introduce for each particle the quantity

p, = m, ¥, + q, A(r) (B.44)
so that P can be written

P = Z pa + Ptrans M (B45)

In fact, one can show that in the Coulomb gauge, p, is the conjugate
momentum to r, or the generalized momentum of the particle a (see §C.3,
Chapter II). One can see then that, in the Coulomb gauge, the difference
between the conjugate momentum p, and the mechanical momentum
m f, of the particle « is nothing more than the momentum associated with
the longitudinal field of the particle a.

Remark

Using (B.44), the total energy given in (B.38) can be written
1
H = Z ﬁ [px - qz AL(ra)]z + VCoul + leans . (B46)

One can show that H is nothing more than the Hamiltonian of the system in
the Coulomb gauge (see §C.3, Chapter II).

¢) THE TOTAL ANGULAR MOMENTUM

Calculations analogous to the foregoing (see also Complement By, §1)
show that the total angular momentum J given in (A.9) can be written

J =20 X P+ Jians (B.47)
where p, is defined in (B.44), and where

Jlrans = &g J'd:;rr X [E_L(r) X B(l')] (B48)

1s the angular momentum of the transverse field.
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6. Equations of Motion for the Transverse Fields

One now returns to the second pair of Maxwell’s equations (B.5.c) and
(B.5.d), and one examines the transverse parts of these two equations,
which can be written in the form

B=—-ikx&=—ik x & (B.49.a)
G, —ick x B — =, (B.49.b)
0

The second pair of Maxwell’s equations then appear as the dynamical
equations giving the rate of variation of the transverse fields & and &, .

It is important to note that the source term appearing in the equation
of motion (B.49.b) for &, is 4, , and not j. Since, in real space the
relationship between j, and j is not local (see Remark i of §B.3 above),
the rate of change of E | (r, ) at point r and time ¢ depends on the current
j(r’.t) at all other points r’ at the same time ¢. It follows that E
includes, like E > instantaneous contributions from the charge distribu-
tion. It can be shown (see Exercise 3) that the instantaneous parts of E
and E, compensate each other exactly, so that the total field E = E, + E |
is a purely retarded field.

To conclude this section it is useful to reconsider the definition (A.6) of
the “state” of the global system field + particles at time ¢,. Since the
longitudinal field can, in fact, be expressed totally as a function of r, [see
(B.21)], the state of the system is completely fixed by giving

(8K, 1o), BK, 1), T{l) T,(1o) } (B.50)

for all k and all «. We will see in the next section that it is possible to
improve the choice of the dynamical variables characterizing the state of
the field.

Remark

In Section B, only the equations (B.5) for the fields have been examined. It is
also possible to study the longitudinal and transverse parts of the equations
(B.9) for the potentials. Since the last term in (B.9.b) is longitudinal, the
transverse component of (B.9.b) can be written

1 - ,
F'% + k? of, = Al (B.51)

and this becomes in real space

A, = —i.- (B.52)
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This equation is analogous to (A.14.b) except that one now has A | and j, in
place of A and j. If one takes the longitudinal part of (B.9.b) and uses (B.9.a) to
eliminate %, once again one gets the conservation of charge (B.6). As with
(B.5.d), the longitudinal part of (B.9.b) gives rise to nothing new. Finally, only
(B.9.2) remains, and it can be written

kZJZ/=Eip+ik-,J‘, (B.53)
(4]

(since k - &/ | = 0). This equation is not sufficient to fix the motion of <, and
4. This is not a surprising result, since there is a redundancy in the potentials.
To find &/ and %, it is necessary to have an additional condition, that is, to
define the gauge. If one chooses the Coulomb gauge, one makes &/, = 0, and
(B.53) then gives % [see also (A.18.a)]. If one chooses the Lorentz gauge, the
supplementary condition (A.13) in reciprocal space is

V= —ick- oA (B.54)
The pair of equations (B.53) and (B.54) then forms a system of two first-order

equations giving the evolution of &/, and %. Other choices of gauge are
equally possible.
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C—NORMAL VARIABLES

1. Introduction

In ordinary space the rates of change, E(r) and B(r), of the fields E and
B at point r depend on the spatial derivatives of E and B and thus on the
values of E and B in the neighborhood of r. Maxwell’s equations (A.1) are
partial differential equations.

In going to reciprocal space, one has first of ali eliminated &',(k) which
is not really a dynamical variable, since it can be expressed as a function
of r,. One has then seen that the rates of change &, (k) and #(k) depend
only on the values of &, (k) and #Z(k) [and on that of 7, (k)] at the same
point k. Equations (B.49) give a system of two coupled differential
equations for each point k.

Inspection of this linear system (B.49) suggests that one attempt to
introduce two linear combinations of &, and % which evolve indepen-
dently of one another, at least for the free field where 5, = 0.

2. Definition of the Normal Variables
To begin, one writes Equations (B.49) in the form
rﬁlziczkx.’ﬂ—gih (C.1.a)
0

kx B =ik*&,. (C.1.b)

One seeks the eigenfunctions for such a system in the case 5, = 0. One
then finds from (C.1) that

L6 F ok x B) = Tiold, T ox x #) €2

with
w = ck k = k/k. (C.3)

One is then led to define, even if 7, #+ 0, two new variables a(k, 1) and

Bk, 1):
a(k, 1) = — 5 W(k) [£.(k 1) — ck x Bk )] (C.4.a)

Bk 1) = [6.(k 1) + cx x Bk 1)] (C.4.b)

T2 /V(k)
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where 4" (k) is a normalization coefficient which will be chosen later so as
to have the simplest and clearest form for the total energy H.

Before proceeding farther, it is important to note that a and B are not
in fact independent dynamical variables. The real character of E, and B,
which gives rise to equations such as (B.2) for €, and %, requires that

Bk 1) = —a*(='k1). (C.5)

Inverting the linear system (C.4) and using (C.5), one then gets
E (k1) =14k [ak, t) — a*(— k, 1)] (C.6.2)
Bk, 1) = LA k) [k x ok, 2) + k x a*(— k, 1)]. (C.6.b)

c

Knowledge of a(k, ¢) for all the values of k is then equivalent to knowing
&, (k, 1) and #(k, ). In addition, the a(k,:) are truly independent
variables, since no conditions such as (B.2) exist for a(k, 7). One is able
then, for determining the global state of the system, to replace (B.50) with

{alk, 10), 1,(10), T, (1o) } . (C.7

3. Evolution of the Normal Variables

From Maxwell’s equations (C.1) and the definitions (C.4.a) for a, one
gets

One notes especially that since &, and # are related to a by (C.6),
Equation (C.8) is strictly equivalent to Maxwell’s equations. It is neverthe-
less simpler than Maxwell’s equations. It resembles the equation of motion
of the variable x + i( p/mw) of a fictitious harmonic oscillator with
eigenfrequency «, driven by a source term, due to the particles, propor-
tional to 7, (k, 7).

When 4, = 0 (the case of the free field), the evolutions of the various
normal variables a(k, ¢) are completely decoupled. The solution of (C.8) is
then a pure harmonic oscillation describing a normal vibrational mode of
the free field. This is the reason why the a(k,?) are called “normal
variables”.

If external sources are introduced, that is to say, sources independent of
a, the variables a corresponding to different k continue to evolve indepen-
dently of one another, each driven by 4, (k, ) (see, for example, Comple-
ment Byyp).
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Finally, if the sources are the particles interacting with the field, the
motion of 7, depends on a, with the result that the evolutions of
the various variables a(k, ) are, in general, coupled through the action
of the current 7, (k, ¢). It is then necessary to add to (C.8) the equation of
motion of j, (k, 7) [determined from the Newton-Lorentz equation (A.2)
and the definition of the current (A.5)] and to solve this coupled set of
equations.

To conclude this subsection some new notation is introduced. Since a
is (like &€, and ), a transverse vector field, one can, for each value of k,
expand a(k, #) on two unit vectors ¢ and ¢/, normal to one another and
both located in the plane normal to x (Figure 1).

(C.9)
tre=¢gk=¢'k=0
k.
&
K
e “«Hk
k,
l
~
~
~
k. >
Figure 1. The transverse polarization vectors ¢ and ¢’.
One thus gets
alk, ) = e (k1) + € o (k )
=Y rok 1) (C.10)
where
ak, t) = ak 1) (C.11)

is the component of a along ¢. The set {a,(k, t)} for all k and ¢ forms a
complete set of independent variables for the transverse field. The equa-
tion of motion for a (K, t) is
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&E(kq [) + i(l)aﬁ(kq [) = 2—?0—1/1/.—(1() € '/]'(k, 1) (C 12)

where one uses € - 5, = & - 4.

4. The Expressions for the Physical Observables of the Transverse Field as
a Function of the Normal Variables

Later on one always uses the normal variables a,(k, 1) (and the corre-
sponding quantum operators) to characterize the state of the transverse
field. Thus it is important to have expressions for the various physical
observables of the transverse field as a function of the a..

a) THE ENERGY H,,,, OF THE TRANSVERSE FIELD

We substitute in (B.31.b) the expressions (C.6) for &, and # as a
function of a and a* [the more concise notation a* is used for a*(—k, 7)].
In addition, one respects the ordering between a and o* as it arises in the
calculation although a and o* are numbers which commute. The reason
for doing this is that in quantum electrodynamics, a and o* will be
replaced by noncommuting operators. The results obtained in this subsec-
tion then remain valid in the quantum case.

From (C.6), one finds

&F - & = Vet —a ) (@ —a¥)
= VHo* ra+a_ ot —a*¥-at —a_ )
AR B = N+ a) (a+ a¥)
= N¥a*-a+a_ ot +ar-at o a)
(C.13)

with the result that (B.31.b) becomes

Htrans = 8O \[d:&k ‘/1/‘2[“* e 2 i S ai] . (C 14)

Changing from k to —k in the integral of the second term allows one to
replace a_- a* by a - a*. Let us now take for the normalization coeffi-

Vik) = » 15
MK = [5— (C.15

chosen so that in the quantum theory the commutation relations between
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the operators corresponding to a«, and «} are simple. Equation (C.14)
then takes the more suggestive form

H,, = f d3kz [ax(k, 1) o,(k, 1) + a(k 1) a*(k, 1)]. (C.16)

It then appears as the sum of the energies of a set of fictitious harmonic
oscillators with an oscillator of frequency «w = ck being associated with
each pair of vectors k, ¢ (with ¢ normal to k). Such a pair defines a
“mode” of the transverse field.

AND THE ANGULAR MOMENTUM J

b) THE MOMENTUM P, OF THE

TRANSVERSE FIELD

rans trans

A calculation similar to that above allows one to get from (B.39.b)

Pions = J 3k2—[a*(k Dok 1) + ok 1) ok 1)]. (C.17)

For the angular momentum J,,, . of the transverse field given in (B.48),
the calculations are a little more tedious than for H,,.; and P, . (see
§2.b of Complement B,). The following result is obtained:

trans __ h
Ja T2 Z

bed

fd k[ad abc kb ac Oy + Ot;: Eape X —

d €abe Ky Oc 0 — o &4, 0] (C.18)

where a,b,c,d =x, y,orz, .= d/dk_, and e,
tensor.

is the antisymmetric

bc

Remark

The product E | X B appears in the expressions for P, and J,... In quantum
theory E | and B become operators and one can ask if it is not necessary to
symmetrize E, XBin the form(E, XB — B X E )/2. In fact, E, and B are
taken at the same point in space, and we will see in Chapter I (§A.2) that
E, (r) and B(r) are commuting observables, so that symmetrization is not
required.

¢) TRANSVERSE ELECTRIC AND MAGNETIC FIELDS IN REAL SPACE

The expansions of E | (r, t) and B(r, ) are gotten by taking the Fourier
transforms of (C.6.a) and (C.6.b) [in the integral over k of the last terms of
(C.6.a) and (C.6.b) one replaces k by —k]. This then becomes

E(rt) =i Jd3k Y &[0k, 1) e e*r — ax(k, 1) e e ] (C.19)
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5. Similarities and Differences between the Normal Variables and the
Wave Function of a Spin-1 Particle in Reciprocal Space

Consider first the free field. Equation (C.8) can be written
iha(k, 1) = hoa(k, 1) (C.31)

and appears then as a Schridinger equation relative to a “ vector wave
function” a(k, 7), the corresponding Hamiltonian being diagonal in the
reciprocal space with matrix elements hwd(k — k’). Equation (C.16) can
also be interpreted as the mean value of such a Hamiltonian in the wave
function a(k, t). Likewise, since in quantum mechanics the momentum
operator of a particle is diagonal in reciprocal space with matrix elements
hké(k — k), Equation (C.17) can be interpreted as the mean value of the
momentum operator in the wave function a(k, 7). Finally, one can show
(see §2.c, Complement B;) that Equation (C.18), giving the angular
momentum of the transverse field, coincides with the mean value in the
wave function a(k, t) of J = L + S (where L and S are the usual quantum
operators for the orbital angular momentum and spin angular momentum).
The first term in the bracket of (C.18) corresponds to L, the second to S.

All the preceding results suggest that one interpret a(k, ¢) as the wave
function in reciprocal space of a particle of spin 1 (*), namely the photon.
Such an analogy should not, however, be pushed too far. First of all, one
can show that the Fourier transform of a(k, 7) can not be interpreted as
the photon wave function in real space and, more generally, that it is
impossible to construct a position operator for the photon. (**) Addition-
ally, the equation of motion of a no longer has the form of a Schrodinger
equation in the presence of sources: it is not homogeneous. Such a result is
not surprising. The Schrodinger equation preserves the norm of the wave
function and thus the number of particles. Now it is well known that in
the presence of sources, photons can be absorbed or emitted. Thus one
cannot introduce a Schrodinger equation for a single photon in the
presence of sources. In fact, the electromagnetic field itself must be
quantized, and photons then occur as elementary excitations of the
quantized field. We will see in the following chapters that the “wave
function”, or more properly the state vector, of the quantized field is a

(*) The value of 1 for the spin is tied to the vector character of a. See Akhiezer and
Berestetskii, Chapter 1.

(**) See, for example, E. Wigner and T. D. Newton, Rev. Mod. Phys., 21, 400 (1949);
M. H. L. Pryce, Proc. Roy. Soc., 195A, 62 (1948).
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vector in a Fock space where the number of photons can vary from zero
(vacuum state) to infinity.

The preceding analogy can however be of some use. It suggests, for
example, that one examine the transverse eigenfunctions of J? and J, in
reciprocal space. This leads to the multipolar expansion of the transverse
field (see Complement B;), more convenient than the plane-wave expan-
sion (given above) in all problems where the angular momentum is
important.

6. Periodic Boundary Conditions. Simplified Notation

It is common to consider the fields as being contained in a cube of edge
L, and satisfying periodic boundary conditions at the sides of the cube. At
the end of the calculation one lets L go to infinity. All the physical
predictions (cross-sections, transition probabilities, etc.) should certainly
be independent of L.

The advantage of such a procedure is the replacement of the Fourier
integrals by Fourier series. In other words, the integrals on k are replaced
by discrete sums over

key.=2mn., /L (C.32)
where n, , . are integers (positive, negative, or zero). The variables
a,(k, 1) are replaced by the discrete variables ay(1):

ok, 1) = o (1). (C.33.a)

One can even use the more concise notation

o, = % (C.33.b)

i

where the index i designates the set (k,, €,). The correspondence between
the two types of sum obeys the following rule:

2 3
jd% Y ke e} <Tn> Sk, €. (C.34)
In summary, the following are the expansions in «; and a* of H,,,,
Ptrans? A 1 E_L s and B:
how,
Htrans = 2—2—((1:': % + a:k) (C35)
7k,
Ptrans = Z ——l(:x* &; + &; al*) (C36)

A Zd [(X 8 eil(,-.r + a;k aie—ik,.r] (C37)
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E =i Z E ol & et — o g ek (C.38)

B = izﬂw.[“i K, x g ek — g¥ K, x g e k) (C.39)
i

with

ho, |2 &, é,
8, = [2 : L3] @, =22 g, =Ce (C.40)
‘0

In these expressions ¥, indicates summation on all the modes ke, It is
convenient to note also that when going from the Fourier integral to the
Fourier series, the factor (1/27)%? of Equations (B.1) is replaced by
1/L%2. This explains why &, contains L* in place of (27)° [compare
(C.21) and (C.40)]. Finally the ‘evolution of a, is governed by

i

% + iw; o = — = /i (C.41)
V2 &y hw,
with
o 1 3 —ik.r . d
Ji —\7_1—‘—_3Jvd re g - j(r). (C.42)
Remark

The discrete variable &, has not the same dimensions as the continuous variable
a,(k). More precisely,

32
o = (2%) a, (k) (C.43)
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D —CONCLUSION: DISCUSSION OF VARIOUS
POSSIBLE QUANTIZATION SCHEMES

After this rapid survey of classical electrodynamics, we now face the
problem of quantization of the theory. Here we will review various
possible strategies for quantization which will clarify the motivation and
the organization of the following chapters.

1. Elementary Approach

The formulation given in this chapter lends itself particularly well to an
clementary approach. Indeed, we have shown that the global system
(electromagnetic field + particles) is formally equivalent to a set of mutu-
ally interacting particles and oscillators. The simplest idea which can then
be put forth for quantizing such a system is to quantize the particles and
the oscillators in the usual way. With the position r, and with the
momentum p, of the particle a we associate operators (*) whose commuta-
tor is ik, and we replace the normal variables a, and a} of the oscillator i
by the well-known annihilation and creation operators a; and a} with
commutator equal to 1 taken from the quantum theory of the harmonic
oscillator:
® — a; af - a . (D.1)

1

All the physical quantities, which can be expressed as functions of r,, p,,
a,, and a*, become operators acting in the space of the quantum states of
the global system.

Such an approach is, however, heuristic. Since it does not come from a
Lagrangian or Hamiltonian formulation, we do not know if r, and p, on
one hand or «, and a on the other [more precisely, ¢, = (a; + af)/ V2
and p, = i(a¥ — a,)/ V2] can be thought of as conjugate dynamical
variables with respect to a Hamiltonian which has yet to be written.
Certainly, in this chapter the expression for the total energy of the system
has been given, but the conditions under which this expression can be
considered as the Hamiltonian of the system have not been established.

It is nevertheless possible to avoid this difficulty. One postulates the
following expression for the Hamiltonian in the Coulomb gauge:

o1 . L ho,
H = Zm Py — . AT + Veou + Z—Z—(ai+ a; + a;a’) (D.2)

(*) To simplify the notation the same symbols are retained to designate the classical
variables of the particles r, and p, and the associated operators.
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which is nothing more than Equation (B.46) for the total energy (in the
Coulomb gauge A = A |), «; and a} being replaced in Equation (C.35)
for H,_,.. by the operators a, and a;. One also postulates the following
commutation relation for r, and p, on one hand:

[rais 755] = [Pois Pgj) = 0
{ Bj . Bi (D.3)
[Fais Pgj] = 16,5 6

where i, j = x, y, z (the 80(B indicates that the variables of two different
particles commute), and for @, and @, on the other:

[ o
(D.4)

The §,; indicates that the variables of two different modes of the trans-
verse field commute. One can then show (as will be done in §B.2, Chapter
III) that the Heisenberg equations derived from the Hamiltonian (D.2)
and the commutation relations (D.3) and (D.4) lead to good equations of
motion, that is to say, to the Maxwell-Lorentz equations between opera-
tors.

The reader ready to accept the foregoing points and wishing to get as
quickly and simply as possible to the quantum theory can skip Chapter II,
devoted to the Lagrangian and Hamiltonian formulation of electrodynam-
ics, and go directly to Chapter III, which starts from the expressions given
in this subsection.

2. Lagrangian and Hamiltonian Approach

This approach consists in showing initially that the basic equations of
classical electrodynamics, the Maxwell-Lorentz equations, can be thought
of as Lagrange’s equations derived vanationally from a certain La-
grangian. Canonical quantization of the system is then achieved by
associating with each pair formed by a “generalized coordinate” and its
“canonically conjugate” momentum two operators with commutator i4.

Although more abstract, such an approach offers a number of advan-
tages. It allows one to identify which field variables are conjugate (for
example, in the Coulomb gauge the vector potential and the transverse
electric field) and to obtain the Hamiltonian directly without it being
necessary to postulate it. This approach also allows a deeper understand-
ing of the problems tied to the choice of gauge. The Coulomb gauge
appears then as the most “economical” gauge, allowing one to ¢liminate
most easily the redundant variables in the Lagrangian. Finally, it is well
known that two Lagrangians differing only by a total derivative are
physically equivalent. It is thus possible to construct many equivalent
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formulations of quantum electrodynamics and to discuss directly the
relations which exist between tham.

Chapter 11 presents classical electrodynamics and its canonical quanti-
zation starting from such a point of view. Equations (D.2), (D.3), and
(D.4) are therein justified in a rigorous fashion. Changes of Lagrangian
and Hamiltonian will be treated in Chapter IV along with the various
formulations of electrodynamics to which they give rise.

For certain problems it is important to use a manifestly covariant
formulation. This leads one to choose a different gauge from the Coulomb
one and complicates the problem of quantization. These questions will be
considered in Chapter V.

GENERAL REFERENCES AND ADDITIONAL READINGS
Jackson, Feynman et al (Volume 1I), Landau and Lifschitz (Volume II),

Messiah (Chapter XXI, §III), Akhiezer and Berestetskii (Chapter I),
Cohen-Tannoudji (§1).
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COMPLEMENT A,

THE “TRANSVERSE” DELTA FUNCTION

The transverse delta function 8,7 (p) allows one to extract from a
vector field its transverse component. It is easy to understand why it plays
an important role in electrodynamics in the Coulomb gauge, since the
transverse fields are favored in this gauge. The purpose of this comple-
ment is to establish the expressions and the properties of this function and
to illustrate its use in a simple example. The expression for the transverse
delta function is particularly simple in reciprocal space. On the other
hand, we will see that calculating its Fourier transform to find 8.5 (p)
presents certain difficulties which justify the detailed treatment given here.

1. Definition in Reciprocal Space

a) CARTESIAN COORDINATES. TRANSVERSE AND LONGITUDINAL
COMPONENTS

Two different types of basis vectors will be used in reciprocal space to
define vector fields: the Cartesian system {e } (i = x, y, z), and the
system composed of the longitudinal unit vector k = k/k and the two unit
transverse vectors € and ¢, introduced in (C.9). The Cartesian compo-
nents of vector ¥ are denoted by ¥7. One will often have to perform
summations on the two transverse polarizations of products of compo-
nents of & and &’. Their expressions are as follows. Consider first

n - o ! ’
Y g8 =& 8 + £
gLk

—[(e - 2) (e~ ) + (e~ €)(& - ) + (& ) (i - €)] —
— (e K)(x - e)

e e — (e K(e K
=0, — K. K. (N

tj LI

Another summation is

Y el x 8); =g &+ &(— £;) 2

tlk
where in writing the right-hand side, we have noted that

KX§¢g=¢ K X & =—¢. 3)
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It appears then that (2) is nothing more than the component of the vector
product & X ¢ on e, X e,. This then becomes

Z ek x g); = 21: &t I 4

£lk

where ¢, is the antisymmetric tensor. Finally, using (3) and (1), one
immediately gets

Y (K x8)(k x &), =08; — KK, ®)

£lk

b) PROJECTION ON THE SUBSPACE OF TRANSVERSE FIELDS

The transverse delta function is closely tied to the projection operator
on the subspace of transverse vector fields. In order to see this, consider a
vector field V(r) and its Fourier transform ¥"(k). In reciprocal space,
¥ (k) is easily gotten from ¥7(k) by projecting ¥"(k) onto the plane
normal to k at point k:

Vi) =Y ee - ¥ () (©)
By projecting on e, and using (1), we obtain
"fii(k) = Z(‘sij - K Kj) %(k) . (7)
J
Let us denote by A+ the projection operator acting in the space of vector
fields and generating the correspondence between ¥~ and ¥~ :
V> =A"|V). (8)

This relation, written between the Cartesian components in reciprocal
space, becomes

Vidk) = J 4k Y A5k K) Y (K) (€)

where Afj(k, k") is the matrix element of the operator A+ in the basis

{Ik,e,)}. Comparison with (7) shows that this matrix element is equal to

k. k;
A = <5U - ;(;) Sk — k). (10)

In real space, the same relation (8) is written

V() = fd3r’ Z A(r ¥y Vi(r). (1)
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The matrix elements of the operator A* in the basis {|r,e;)} are given by

N 3 3 eik.r N e—ik’.r'
Aij(rv r) = Jvd k Jvd k (7‘7'[—)—372‘ Aij(k, k) (7—7-[—)—372-
(12)
dk .k(,)<‘ ki k;
— eik.(r T b oty .
2 n)? Y k2
It appears then that the transverse delta- function introduced in (B.17),
d*k ki k;
IHp) = fm ek'p<5ij - k2]> (13)

is tied to the matrix element of A* in the basis {|r,e;)} by
Ajr, ¥) = 5i(r — r). (14)

Remark

One can likewise introduce the projector A’ on the subspace of longitudinal
fields which is the complement to 1 of A+ :

Al=1— AL, (15)

2. The Expression for the Transverse Delta Function in Real Space

From the definition (13), it appears that 8,7 (p) is the Fourier trans-
form of a function which does not tend to zero when |k| tends to infinity.
The transverse delta function then has a singularity at p = 0 which one
must carefully characterize. To this end, one regularizes this singularity by
truncating the spatial frequencies greater than some bound k,,. One later
allows k,, to go to infinity. Physically, such a procedure means that one is
not interested in variations of the field over infinitesimally short distances,
but rather in the mean field over small but finite regions of space.

a) REGULARIZATION OF 8,7 (p)

Mathematically, one achieves the regularization by muitiplying §,; —
(kk,/k?) by k3,/(k* + k3;), which has magnitude 1 for k < k,,, and
decreases as 1/k? at infinity:

. N A N AN
s30 = [ (oo~ ) g 1
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This regularized function can be written, taking account of the properties
of the Fourier transformation, as

3ip) = [—52—— - 5~<Z iz—ﬂ 9(p) (17)
where Y op; apj NG aplz
A3k kzzw cik-p
9p) = J(z 0)° K + k2, (18)

b) CALCULATION OF g(p)

One first performs the angular integral on k:

)_ ockzdkz 1 d eikpukﬁl
gp) = . (2n)3 T » ukz(kz—f-k,%,)

[T dk e e k3, 19)
), emr o ik K+ kY
k2 o eiko
= —5— J dk s
@mip ), kk* + ki)
This last integral is easily evaluated by the method of residues:
2
g(p) = #; [2in Res (k = iky) + in Res (k = 0)]
k3, g kme . 1 }
C 2mp ik, (2iky) 2Kk |
So that finally
_ 1 ~kmp
.G(p)—4np(1—e ). (20)

Outside the neighborhood of the origin (p > 1/k,,), g(p) is equal to
1/4mp, which is indeed the Fourier transform of 1/k2 But as p — 0,
g(p) remains finite and tends to k,,/4.

¢) EVALUATION OF THE DERIVATIVES OF g(p)

Equation (17) gives the transverse delta function as a function of the
second derivative of the function g(p). Since this latter is only a function
of the modulus of p, one uses to evaluate its derivatives

-

(¢

P
=y 21
7 g(p) pg(p) (21a)
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0
(/T,D—j pi = 51’;’ (21b)
which yields
& % pip; d(q(p) 2l¢)
O o) = 2 gy 4 PP _<__
ap,.apjg(") pg(p) o o\ p
iy T p
Then
0* 2
— =g + - 21d
Z P 79(P) =9 il (21d)
Substituting in (17) this gives the expression for 8;; (p):
PiP; g .9
o5(p) = : (9 - _> - 5ij<g + _> (22)
p’ p p
Evaluation of g” and g’/p gives
4 = 1 —kvp klz\/l ,02 )
g(p)—4np3[2—2e <1+kMp+ 3 (23a)
Loty = =L 11 = e el 4 ky )] 23b
5900 =1 M P (23b)

d) DISCUSSION OF THE EXPRESSION FOR 8,7. (p)

Equations (21), (22), and (23) lead to the following expression for the
regularized transverse delta function (17):

3pip;
51-'l-j(p) = Vij(p) + 4 np3 [Tj - 5ij:| n(p) (24)
where
ki (pip; i}
7iP) = g np( pzj + ;| eThme (25)
np) =1 —(1 + ky p + %kil pz)@"“” (26)

The function v;,(p) is localized about the origin. At the limit &, — oo it
tends to a point-source distribution centered on p = 0. Such a dlstrlbutlon
can a priori be written as a sum of a function 8(p) and its derivatives of
order 1,2,..., which we are going to evaluate.
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Note first that, simply as a result of homogeneity, the integral
J‘dsp Vij(p) =1 (27)

is a number independent of k,, In contrast, the integral of the same
function multiplied by a term of degree m in p, is proportional to
(1/k, )™ and goes to zero when k, — oo. Thus, in the integral of the
product of vy,;(p) with a function ¥(p) expandable about p = 0, only the
first term of the series gives a nonzero contribution in the limit k,, - oo:

f & 1,0) ¥(p) = I, w(0). (28)
It follows that
klignm yidp) = 1, o(p) (29)

where

I, = J‘dSP Vij(p)

= ﬂpdp de 5ij +
0

The angular average of p,.pj/pz is §,;/3, and the radial integral gives

2
1 =§5fj- (31

At the limit k,, — o0, v,,(p) is then simply

PiPi\ _
2’)6 ke (30)
P

2
74P = 3 51‘,’ o(p) (32)

where it is understood that the function 6(p) has an extent of 1 /k,,.

The function 7(p) is a regularizing function which becomes 1 for
p > 1/k,, and which starts as k3,p*/6 at the origin, with the result that
the second term in (24) does not diverge at p = 0. It behaves like a dipole
field regularized at the origin. Such a function has properties in three-
dimensional space analogous to those of the principal-part function
#(1/x). Actually, on integrating over a small volume centered at the
origin, the second term of (24) gives zero, although it has in this region a
value of the order of k3,. This property arises from the vanishing of the
angular average of (3 p; p,/ p?) — 9, ;- in the same way that the integral of
i (1/x) 1s zero as a result of the odd parity of this function.
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Finally, the transverse delta function can be written

2 np) (3 p; p;
5ilj(p) = géij o(p) + 2 np3<_p2—J - 5:‘;) (33)

where 71(p) is equal to 1 away from the origin and suppresses the
divergence at p = 0.

Remarks

(i) The factor £ in (32) can be simply found. Taking the trace on 7 of (13) gives
immediately

Y S550) = 2 6(p). (34)

i

In the expression (33) for 8,7, only the first term contributes to the trace and
the factor 2 of (32) is necessary to satisfy (34).

(ii) One can ask if the second term of (24) does not give rise, in the limit
k. — oo, to derivatives of the delta function 8(p). In fact, the dimensional
argument already developed for v, ;(p) applies: for functions of degree m in p,,
the contribution of the neighborhood of the origin to the integral of the product
of these functions with the second term of (24) is of the order 1/k}; and tends
to zero when k,, — .

3. Application to the Evaluation of the Magnetic Field Created by a
Magnetization Distribution. Contact Interaction

The magnetic field B(r) created by a magnetization density M(r) is
given by Maxwell’s equation

1

V x B = —
0

j(r) (35)

where

i(r) =V x M(r) (36)
is the current associated with M(r). Substituting (36) in (35) and trans-
forming into reciprocal space, this becomes

1
2
g C

ik x B(k) = ik x .K). 37

This equation allows one to find # (k). Projecting both sides of (37) on k
and using the transverse nature of #Z(k - # = 0), one gets

1

BA) = —— [MK) — k(- MR)] = —— .40  (38)
o€ gy C

3 -

€ 0
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which shows that # is (except for a factor 1 /e,c?) the transverse compo-
nent of . In real space, Equation (38) is written

B(r) = Mll(r) =— Z str’ Oh(r — ) M(r). (39)

Using (33) for the transverse delta function appearing in (39) shows
that B(r) is a sum of two contributions. The first one, coming from the
first term in (33), is simply proportional to the density M(r) taken at point
r. The second one, coming from the second term of (33), represents
physically the dipolar field created at r by the magnetization density M(r')
at all other points r’. The presence of the regularization function 7 in the
second term of (33) makes all the expressions finite, and symmetry
arguments then allow one to show that the immediate neighborhood of r
does not contribute to the integral on r’ of the product of the second term
of (33) with M (r’) (sce §2.d above).

Consider now another magnetization density M’(r). The interaction
energy of M'(r) with the field B(r) created by M(r) is

W= — j d3r M/(r) - B(r). (40)

Equation (39) allows this to be written in a more symmetric form,

W= — IZZZstrJd3r’M(r)5(r—r)M(r) 41)
Eg €7 1
Using (33) again allows one to separate two contributions in W. The
first,

1 5 jd3r M'(r) - M(r) (42)
o€

W= 2
3¢

which depends on the magnetization densities M and M’ at the same
point r, is called for that reason the contact interaction. The second,

_ o (g, =rD)
W, = - zzzjd jd .

4dmey TG —r |)3

« Mi’(r) |:3(l' —(rl'z,' (r — l")j _ (Sij:, Mj(l',) (43)

r)?

represents the magnetic dipole—dipole interaction between the two densi-
ties. As above, the regularization introduced by % and symmetry argu-
ments show that the immediate neighborhood of |r — r'| = 0 does not
contribute to W.
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Remark

The foregoing can be applied to the study of the magnetic interaction between
the nuclear spin and the electron spin in an atom. One takes as M(r) the
magnetization density of the nucleus. This density can be appreciable only in a
volume of the order of r}, where r, characterizes the dimensions of the nucleus,
which is taken at the coordinate origin. The integral of M(r) is just the magnetic
moment of the nucleus,

= Jd% M(r) . (44)

One assumes in addition that M/(r) represents the spin magnetization density
of the electron in the state §(r), so that

M(r) = p, | ¥() |* (45)

where p, is the spin magnetic moment of the electron. Important simplifica-
tions appear in the interaction energy W as a result of the different spatial
extensions of M(r) and M'(r). Indeed, the spatial extent of |{(r)|* is of the
order of the Bohr radius a,, which is much larger than the nuclear radius. If
one ignores the variation of [{(r)|? inside the nucleus, the contact interaction
(42) becomes

W, ~ — z : 5 Jd:*r M'(0) - M(r) (46)
3¢

that is, taking into account (44) and (45),

2
W, ~ — —— . 0. 47
1 380(\2“’\1 ue'l//( )l (47)

In the same way, one can make a multipole expansion of M(r) in (43) and only
keep the lowest-order term, which yields

M(r) = p, 6(r). (48)

Equation (43) then becomes

n(r) 3rpry
2 2 2 [da < 7 - - (),.j> Hej

i

W, ~ —

2. (49)

d ey c

Finally, regrouping (47) and (49) shows that the magnetic interaction energy
between the two spins appears as the mean value in the state y(r) of the
interaction Hamiltonian

It

1 .
H 5 Z Z Hyi Oilj(l') Hej
[

o €
|

- 2
dmegc

Il

(50)

8= . e ) (py o 1) p,p,
[T B, - pyo(r) + £ - B - 73 X

r

where r is the position of the electron with respect to the nucleus and where it is
further understood that the dipole-dipole interaction is regularized at r = 0.
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COMPLEMENT B,

ANGULAR MOMENTUM OF THE ELECTROMAGNETIC
FIELD. MULTIPOLE WAVES

The first motivation for this complement is to establish some results
given without proof in Chapter I and related to the angular momentum of
the electromagnetic field. We first show (§1) that the contribution of the
longitudinal electric field to the angular momentum of the field can be
reexpressed as a function of the particle coordinates r, and the transverse
vector potential A | (r,) and regrouped with the angular momentum of the
particles. We also establish (§2) the expression for the angular momentum
of the transverse field as a function of the normal variables a(k). The
expression gotten is closely analogous to that giving the mean value for
the total angular momentum of a spin-1 particle whose vector wave
function is precisely a(k) in reciprocal space.

The foregoing analogy suggests then that one look for functions a(k)
suitable for the angular momentum of the transverse field. More precisely,
one tries to determine transverse vector functions of k, defined on a sphere
of radius k,, which are also eigenfunctions of J% and J,, where J is the
total angular momentum of a spin-1 particle. Instead of coupling in the
usual fashion the orbital angular momentum L to the spin angular
momentum S of such a particle, we will see in §3 a simpler method for
constructing the eigenfunctions of J? and J, which give the longitudinal
or transverse eigenfunctions directly.

When the ecigenfunctions thus found are substituted for the normal
variables in the expansion of the electric and magnetic fields, one then
gets, in real space, electromagnetic waves corresponding to photons with
well-defined energy, angular momentum, and parity (§4). The second
motivation behind this complement is to give a simple derivation of such
multipolar waves, which are well suited to all the problems of atomic or
nuclear physics where exchanges of angular momentum between matter
and radiation play an important role.

1. Contribution of the Longitudinal Electric Field to the Total
Angular Momentum

Let

Jiong = €0 jd3rr x (E; x B) (1)
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be the contribution of the longitudinal electric field to the total angular
momentum of the system field + particles. Replacing B by Vv X A |
(since ¥ X A, = 0) and using the expression for the double vector prod-
uct to transform E; X (7 X A ) yields

Jiong = o Jvd3r{ E(rt x V)4, 6 —rx (E"V)Al}. 2)
a=xy,z
The last term in (2) can be rewritten by moving r to the right of v:

& Jd%[— (E, V) xA) +E, x A,]. (3)

Integrate the first term of (3) by parts. The integrated term gives a surface
integral at infinity which vanishes if the fields go to zero sufficiently
quickly. In the remaining term the quantity 7 - E, appears, and this is
p/&, from Maxwell’s equation (A.l.a). Regrouping the expression so
obtained for (3) and the first term of (2), and making use of the fact that
E, = — VU, where U is the Coulomb potential, one gets finally

J

long =

= str{p(r x A) = £, Y (V,U)(r x V) A,, — £,(VU) x Al}. (4)

One can see now that the last two terms in (4) cancel. Integrating them by
parts, one gets

& Jd%{z UV rx V)4, + UV x AL)}. (5)

Now

YUV x VA, =UrxV)(V-A)—UV xA). (6

The first term of (6) vanishes, since ¥ - A | = 0. The second term of (6)
cancels with the last term of (5). Only the first term of (4) remains, which,
using (A.5.a) for p, gives

Jlong = z qz rac X Ai(rz) . (7)

It is clear then that J,,, can be written as a function of the coordinates
r, of the particles and of the transverse potential A | . This result is gauge
independent, since A | is gauge invariant [see (B.26)].
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One now groups J,,,, with the angular momentum of the particles,
L, r, X m,k, This gives

Jlong + z rz X ’na ia = z raz X [qaz AL(ra) + ma l.'a]

=21, X p, (8)

where p, is defined by (B.44). In the Coulomb gauge (A = A ). p, is the
momentum conjugate with r,, or equivalently the canonical momentum of
particle a. It appears then that in the Coulomb gauge the difference
between the quantities r, X p, and r, X m,f, is just the angular momen-
tum associated with the longitudinal electric field of particle a.

2. Angular Momentum of the Transverse Field

In this section, we transform the expression for the angular momentum
of the transverse field,

P j e x (E, x B) )

a) J,,,. IN RECIPROCAL SPACE

The calculations at the beginning of §1 above remain valid when one
replaces E, by E | throughout. Since 7 - E | = 0, the integration by parts
of the term corresponding to the first term of (3) now gives a zero result,
and only the terms corresponding to the first term of (2) and the last term
of (3) remain:

J,mns=aojd3'r{ZEu(r><V)AM+El X AL}. (10)

One now expresses J, ., as a function of the Fourier spatial transforms
&, and &, of E, and A . For this, one uses the Parseval-Plancherel
identity and the following table:

TABLE 1
r—iVv

V ik
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giving the correspondence between the operators multiplication by r and
gradient with respect to r in real space on one hand and the operators
multiplication by k and gradient with respect to k (denoted by ¥V to
distinguish it from V) in reciprocal space on the other. One then gets

Jlrans = 80 Jvdsk { Z gfa(k X V)"Q{J_a + gf X dJ_} (11)

(usingk x ¥ = — FV x k).

b) J

In Part C of this chapter, &, and &/, have been given in terms of
normal variables a(k):

IN TERMS OF NORMAL VARIABLES

trans

8 =iNa — a*) (12)

A, = %/}(oz + a*). (13)

Recall that A" is a normalization coefficient given by (C.15) and that « _
is an abbreviated notation for a(—k, ). Substituting (12) and (13) in (11)
and changing k to —k in certain terms, one gets

‘/1/}2
Jirans = o fdsk—{za:(— ik x V)a, — ioa* x o —

w

— Y o_(—ik xV)o,+ie. x a—

— [same terms where o 2 a*] } (14)

The contribution of the second line of (14) to the integral is zero. Firstly,
the term a_ X a is odd in k and its integral vanishes. Then, changing k to
—k in the first term of the second line of (14) and integrating it by parts,
one sees that the contribution of this term is equal to its opposite and thus
vanishes. One has then

Jirans = gfd%{lii a¥(— ik x V) a, — ia* x a} — (a2 a*]} (15)

X

an expression equivalent to Equation (C.18).
In all the calculations we have done, the ordering between a and a* has
always been respected and is as it appears in the equations. If one neglects
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to take this ordering into account, Equation (15) simplifies and becomes

Jians = 11 jd3k[z a*(— ik x V) a, — ia* x a]. (16)

a

¢) ANALOGY WITH THE MEAN VALUE OF THE TOTAL ANGULAR
MOMENTUM OF A SPIN-1 PARTICLE

We will now see that it is possible to reinterpret Equation (16) for Jirans
To do this, set aside for the moment the problem of the angular momen-
tum of the electromagnetic field, and consider the quantum mechanics of a
spin-1 particle.

There are three possible spin states for such a particle, and the wave
function representing the state |¢) of the particle will be a vector wave

function with three components. In reciprocal space these components
will be called

(kald) = ¢ k). (17)

We have taken a spin-state basis {|a)} which is not the set of eigenstates
(1 = 1,10, | + 1)} of S., but the set of Cartesian spin states
(1), |y, |2} related to it:

x> =—7=(-1>-1+1))

Gl

1

ly>=—4(-1>+1+1)

J2
lz> =10). (18)

One now evaluates the mean value in the state |¢) of the total angular
momentum

J=L+S8S (19)

for such a particle, where L. and S are the orbital and spin angular
momenta. Using Table I, L is given in reciprocal space by the operator

L=iVxhk=—iikxV. (20)

Since L does not act on the spin quantum numbers,

CHILIGY = jd3kz¢::<k><— kx o k). QD)
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To find the mean value of S, let us first give the action of S, S,, and S,
on the Cartesian basis states |x), [y), and |z):

Sa'b>:ih28abclc> (22)

which derives from the known action of S, and S, =S8, £ S, on the
eigenstates of S, and from equations (18)." Since S does not act on the
quantum numbers k, one gets then from (22)

<¢|S|d>>=—iﬁfd3k¢*(k)><¢(k)- (23)

Compare (21) and (23) with the two terms appearing on the right-hand
side of (16) for J,,,,. If one identifies the normal variables a(k) with the
vector wave function ¢(k) of a spin-1 particle in reciprocal space, J, .
appears then as the mean value of the total angular momentum of such a
particle, the first and second terms of (16) being associated with the
orbital angular momentum and the spin angular momentum respectively.

Remarks

(i) It must be kept in mind that the normal variables a(k) form a transverse
vector field. If one reinterprets a(k) as the wave function of a photon in
reciprocal space, it is equally necessary to constrain the photon wave-function
space to belong to the subspace of transverse fields and to consider as physical
only the observables leaving such a subspace invariant. Let us show that L and
S are not separately physically observable as J = L. + S is. The operator L is
associated with an “orbital rotation” of the vector field: L rotates the point of
application k of each vector a(k) of the field without rotating « at the same
time. In such an operation, the orthogonality between k and «(k) is not
preserved. Likewise, S causes the vector a to rotate without changing its point
of application, which also causes the transversality of the field to break down.
In contrast, J causes the vector and its point of application to rotate at the
same time, preserving the angles and thus the transversality. This can also be
clarified by the following argument. The spin of a particle represents its total
angular momentum in the frame where it is at rest. Such a frame does not exist
for the photon, which propagates at the velocity of light, with the result that §
(and likewise L) is not separately observable for a photon.

(ii) Analogous reasoning allows one to understand why r cannot be a position
operator for the photon: r generates translations in reciprocal space, and
such operations in general do not retain the orthogonality between « and the
vector k.
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3. Set of Vector Functions of k “Adapted” to the Angular Momentum

a) GENERAL IDEA

As seen in Part C, giving the complex vector function a(k) completely
defines the state of the electromagnetic field. Up to transversality (to
which we shall return), this function is isomorphic with the wave function
of a spin-1 particle. To each basis in the state space of this particle there
corresponds a set of states of the electromagnetic field able to produce
through linear combination any state of the field. Thus, the set of
functions

ok, (k) = € 0(k — k) 24)

for all k, and all ¢, normal to k, form a basis for the space of vector
functions, to which corresponds the field expansion in plane waves used in
Chapter 1. This basis is in fact the basis of eigenstates of the momentum
for the associated spin-1 particle. This property explains the simple form
of (C.17) for the momentum of the transverse field when using this basis.

In a similar way one can now construct another basis “adapted” to the
angular momentum. It is a basis of eigenstates for J? and J., J being the
total angular momentum (19) of the spin-1 particle which we have
associated with the electromagnetic field. It is well known that the
orbital-angular-momentum operator L acts only on the polar angles of
vector k, or equivalently on the unit vector x = k/k. The operator for S
does not act on k. Consequently, knowledge of the eigenvalues of J 2 and
J, does not give any information on the radial part of the eigenfunction. If
one takes this radial part proportional to 8(k — k), the basis functions
are also energy cigenfunctions with eigenvalue hck, (since the photon
energy depends only on |k|). One thus takes

[ S
Oy umlk) = T ok — ko) &yplK) (25.a)
0
where the factor 1 /k, has been introduced for normalization:
Jvd3k d)lt’,J’M'(k) ) d)quM(k) = (kg — ko) 0y, Onar - (25.b)

The angular function ¢,,(x) is likewise normalized on the sphere of
radius 1:

J‘dZK OF (k) * )y (k) = Oy Oprnrr (25.¢)



52 Classical Electrodynamics B,.3

and must be fixed with the condition that ¢, om(K) is an eigenfunction of
J? and J, with eigenvalues J(J + 1)4? and Mh respectively.

A first method of constructing é,,,(x) is to take the orbital eigenstates
for L? and L, (the spherical harmonics) and to couple them to the spin
eigenstates for S, using the usual algebra for combining angular momenta.
One thus constructs the vector spherical harmonics. Now these vector
functions are in general neither longitudinal nor transverse [¢;,,(k) is
neither parallel nor perpendicular to k]. To get the transverse functions it
is necessary to combine the functions with the same quantum numbers J
and M but with different eigenvalues L(L + 1)A* of L2.

Here we are going to use a simpler method, due to Berestetskii, Lifshitz,
and Pitayevski, which directly gives the longitudinal and transverse func-
tions.

b) METHOD FOR CONSTRUCTING VECTOR EIGENFUNCTIONS FOR J? AND J,

One can generate vector functions by letting an orbital vector operator
V act on a scalar function x(k) defined on the sphere of unit radius in
reciprocal space. Consider the action of J on such a function:

Jo(V(x)) = L(Vx(6)) + S(V(x)). (26)

Since V is an orbital vector operator, it has the following simple commuta-
“ion relations with L:

(L Vol =10 ) ey, V. (27)

which allow one to write
L (V) = V(L, x(x)) — ifi e, x Vi(K). (28)
To find §,(Vx(k)) note first of all that the vector wave function Vx(x) is

associated with the ket 2,|b) |V, x ), where |V, x) is the orbital part of the
ket and |b) the spin part. Using (22), one gets then

SN0 I Vya)> =ik Y el Vx> (29)
b c.b
which yields for the associated wave function
SAVi(k)) = ifi e, x Vy(x). (30)
Add (28) and (30). This gives

JAV(w) = V(L x(x)). (31)
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It follows immediately then that if one selects for x(k) a spherical
harmonic Y,,,(x) which is an eigenfunction of L? and L, with eigenvalues
J(J + 1)A? and Mh, then VY, (x) is a vector eigenfunction of J* and J,
corresponding to the same eigenvalues:

{ JHVY (k) = JUJ + 1) A2 VY jp ()
JVY () = ME VY (k). (32)

It remains now to select a suitable V so that VY, will be longitudinal
or transverse.

¢) LONGITUDINAL EIGENFUNCTIONS

As a first choice for V, consider the operator of multiplication by k.
One gets a vector function, certainly longitudinal, which one calls N,

Njp(K) = kY (k) (33)

and which is normalized on the unit sphere.

Consider the action of the parity operator II on the function N,,,(k).
Since N,,, is a polar vector field, the operator IT changes the sign of N,
at the same time it changes its point of application from k to —«:

(IINj3) (k) = — Njy(— x). 34
Knowing that

Y (= 1) = (= D Y (k) (35)
one finds

(ITNyy) (1) = (= 1) Njp () (36)

N,,, thus has parity (—1)”.

d) TRANSVERSE EIGENFUNCTIONS

As a second choice for V, take the gradient operator on the unit sphere.
Such an operator, denoted ¥,, acts only on the polar angles of k. It is
related to the ordinary gradient operator F through

o 1
V—Kﬁ-ﬁ-%Vk. (37)
The first term of (37) gives the radial component of the gradient, and the
second the component normal to k. The result of this is that p, Y, (k) is
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in the tangent plane of the unit sphere and is therefore a transverse vector
function. We introduce

Z,,(0) = ———
M 10+ D

where the factor 1/yJ(J + 1) has been introduced for normalization.
The transverse functions Z ;,, are orthogonal to the longitudinal ones N,,,.
They are, additionally, orthogonal among themselves. One has

Vi Y jp(K) (3%)

sz"' Z3\(k) * Zyp (k) =
I
JIT + DI+ 1)

Jd%—(vk Yo s (Ve Yy . (39)

An integration by parts gives —A4,Y,.,,, which is equal to J'(J' + 1)Y,,,,
so that, taking into account the orthonormality of the spherical harmonics,

sz"' LY (k) * Ly (K) = 0,5 Oppye - (40)

Note finally that since the operator ¥, is polar, Zj,, like N,,, has parity
(-1

As a third choice for V consider the operator k X ¥ and the functions

X u(Kx) =

(k x Vi) Y p(x) (41)
JUJ + 1)

where the factor 1/ yJ(J + 1) is again introduced for normalization. The
function X,, is always normal to N,,, and Z;,, and thus orthogonal to
both these functions (in the sense of the scalar product of functions of k).
It is a transverse vector function related to Z,,, by

X, u(K) =k x Z;,, (k) (42)
which can be inverted to give
2, (k) = — Kk x X,(k). (43)

Note that there exists a simple connection between g x F, and the
angular momentum operator L. Actually, taking into account (37) and
(20), k x Wy is nothing more than k x V, that is to say, iL/A, so that

X -— 1 Ly . 44
(%) h\/.](J D) m(K) (44)
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The components of X, are easy to find as a function of the spherical
harmonics, and likewise, through (43), those of Z,, as well. The orthonor-
malization of X ,, immediately results from the orthonormalization rela-
tions (40) for Z,,, thanks to Equation (42), which relates the integrals of
X}y - Xyu to those of Zfy, - Z,y. Finally, since the vector k X f, is axial,
X, has opposite parity to Ny, and Z,, i, (= )7+

The three families of functions N, X, and Z at each point on the unit
sphere form a rectangular coordinate system on which one can project any
vector field; that is, they form a basis for vector functions on the unit
sphere. 1f one keeps only the fields X and Z, one generates all the
transverse fields.

More precisely, the set of functions

1 .
d)kl)JMX(k) = k_o()(k — ko) X pr(K) (45.2)

.
PuoanzK) = =0k = ko) Zyyy(¥) (45.b)

form a basis for the transverse fields in reciprocal space. Giving the
eigenvalues of energy [hck,], those of J? and J. [J(J + 1)A? and Mh],
and the parity [(—1)"*"' or (—1)’] unambiguously specifies the corre-
sponding eigenfunction (45.a) or (45.b). The energy, the total angular
momentum (J2 and J,), and the parity thus form a complete set of
commuting observables for the photon. Every state a(k) of the transverse
field can be expanded in only one way on the basis (45):

x +J

ak) = s‘ dk, Z Z x| Ao IMX Grormx(K) + %z d)kﬂJMZ(k) I

Jo J=1M=-J
(46)
The. coefficients a jpx OF Qx suz iq this expansion (.and their complex
conjugates) become, after quantization, the destruction (and creation)

operators for a photon with energy hck,, angular momenta J(J + IS
and Mh, and parity (- 1)’ *or (=1)’.

Remark

One does not have a function X or Z with J = 0, since ¥y, is a constant and
Py Y oo= 0. This is why the sum on J starts with J = 1 in (46).

4. Application: Multipole Waves in Real Space

When all the expansion coefficients in (46) are zero except for one, the
function a(k) reduces to the eigenfunction ¢, (k) or &4 sz (K). In this
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section the structure of the electromagnetic waves gotten by replacing
a(k) by ¢, suyx(K) or ¢, suz(K) in (C.19) and (C.20), giving E | (r, 1) and
B(r,t) as functions of a(k), will be considered. Such waves, called
multipole waves, are the waves associated with photons whose energy,
angular momentum, and parity are well defined.

a) EVALUATION OF SOME FOURIER TRANSFORMS

When one replaces ¥« (k)e = a(k) by the eigenfunction (45a) or (45b)
in the equation (C.19) for E | , one sees immediately that one needs the
Fourier transforms for these functions. For this it is useful to recall the
expression for the expansion of a plane wave in spherical waves (*¥)

x

+1
H*r=dn Y Y @ ikr) YiK) Y,(0) (“7)

I=0m=—1

it

where
T
p=1 (48)

is the unit vector in the direction of r and where j,(kr) is the spherical
Bessel function of order /. From (47) it follows that

0

jd3k e'r kL otk — ko) Yy, (k) = 4 n(i)l ko jiko 1) Y,.(p) (49)

which will be used later.
Let us evaluate first of all the Fourier transform of ¢, ;4 (k), which is
denoted

Ligsux(r) = ET. { b smx(k) } =

: Jd3k eik-ria(k — ko) (x X Vi) You®) (50)

T 2n” ko JIU + 1)

Since k X V, does not act on k, 8(k — k,) can be put to the right of
k X Vi,which is written as k X y following (37). This yields then, using
Table I in §B,.2,

Leormx(r) = F.T-{(k x V) %50( - ko)\—/—%_(r-—l()_l)}
0
Y ju(%) }
JIU + D

(*) See, for example, Cohen-Tannoudji, Diu, and Laloe, Complement Ayy;.

r x V)F.T. {5(1: — k) (51)

1
ko
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Using (49), the calculation of the Fourier transform of the expression in
braces yields

k Y
st = 5z (0% V) [4 (i)’ jy (ko 1) ﬁ] (52)

Since r X v only acts on p, the expression (41) for X,,(p) arises, and
finally

dr

W ko(i)J Jilko 1) X m(p) - (53)

IngMX(r) =

The calculation of

L ws() = FT. { L5tk = k) v You(®) } (54)

ko NAVED

is a little more complex. Since Y,,(k) does not depend on k, the
expression in braces can be simplified using (37):

0k = ko) P Va0) = 0k = ko) VY0

i k
=V [0k — ko) Y p(6)] — -Eé (k — ko) Y (k). (55)
This then yields, using Table I in §B,.2,
1

I -
k(,JMZ(r) \/J—(j:T)

{ — irFT. [0k — ko) Y p(6)] +

+iVET. B(S'(k —ky) Y,M(x)} } (56)

One next calculates the two Fourier transforms of (56). The first is directly
given by (49) to within a factor k,/(27)*?. To evaluate the second, note
that in the integrand of (49) (1/k,)8(k — k,) can also be written
(1/k)8(k — k). Taking the derivative with respect to k, then gives the
desired Fourier transform except for the sign:

I ") = 4 n(i)’
koJMZ 2 ) r———J(J Iy
+ (~1V) GLI;() [ko Jilko 1) YJM(p)] } Y

The action of the operator V is seen more explicitly if one separates the
action of its radial and angular parts and introduces the dimensionless
variable x = kgr:

{(— in) K2 jy(ko ©) YD) +

0 1 0 1
V—Pa—r+;V,,—kopa+k0}Vp (58)
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and

v — [ko Jilko 1) YJM(P)] =
ckq

~

!
- (ko p =+ ko V,,> (f (/%) Y 0(p) - (59)

Referring to (33) and (38), one sees that (57) contains N, (p) and
Z,,(p). The term between the braces in (57) can be written as —ik,
multiplied by

~2 A~
[XJJ(X) + (:7 (YJJ(V))i| Nyu(p) + l\ — (3 () Z,p(p) /T + 1) (60)

Cx

Since j,(x) is the solution of the radial equation

WAD =0 6

. 2, .

Ji) + 2 A + J/x) =
the coefficient of N,,(p) is simply (1/x)J(J + 1) j,(x). After this simpli-
fication, Equations (60) and (57) give

4 NS -1
Lojz(t) = % {\/-](-] + 1) jylko 1) Njp(p) +

d .
+ m [ko F(/J(ko I)] ZJM(p) } (62)

b) ELECTRIC MULTIPOLE WAVES

These waves correspond to a(k) = ¢, s, (k). From (C.19) and (C.20),
E  (r,?) and B(r, ¢) are then given by

. 2 e o
E omzr 1) =i n)* oo Viosmz(r) €717 + cc.

Bymz(r 1) = 1212 8, Lux® e + cc (63)

One assumes the field to be free so that the temporal evolution is purely
harmonic, and takes ¢B rather than B so that the dimensions are the same
as for E |

The magnetic field at r is perpendicular to the vector r, like I, 5/, (r),
which is proportional to X,,,(p). The expression for the electric field E |
contains both Z,, (p) and N, (p) [see (62) for I, ;,-(r)). E  (r) is then
not normal to r. This is indeed necessary if one wants E |, XB to have a
nonzero moment with respect to the origin. Furthermore, E |, and B are
normal to one another.
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Near the origin (k5 < 1)

(ko 1)’

Jilko 1) = SRR (64)

so that

4k, & o)
E (r, 1) = 4 mkg w0k r @J + D!
x LAYIVIU + DNplp) + (7 + 1) Zyp@)] e + cc. )

ko r) . _
CB(]‘, [) ~ 4 7[/(0 éawo T(-?—_r%)_ﬁ { (1)J+1 XJM(p) e it e } ) (65)

The functions N, X, and Z are on average of the same order of magnitude
on the unit sphere. One has then

ko rE, . (66)

Compared to a plane wave with the same electric field, the magnetic field
(66) is smaller by a factor of k,r/J near the origin. In the neighborhood
of the origin such waves are mainly coupled to the electric multipole
moments, hence the name electric multipole waves.

At large distance (kor > 1)

. 1. T

Jilkor) = Tt sin <k0 r—J —2-> (67)
and the asymptotic forms of the fields are

1 n
E (r.t) ~4nré, {[; cos <ko r—J 5) Z,(p) +

JUJ + 1) . s
+ f—}i——o " ) sin <k0 r—J %) N,M(p)il 1Y e i 4 (o } (68)

B(r, 1) ~ 416, { % sin <k0 r—J g) X,u(p) ) e 4 e }

The radial part of E decreases as 1/r% so that at infinity only the wave
decreasing as 1/r remains, with the structure of a stationary plane wave,
transverse in r-space.
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¢} MAGNETIC MULTIPOLE WAVES

The waves associated with ¢, ,),x(k) are called magnetic multipole
waves. The corresponding free fields E, and B are given by

E iox(n ) = 12 1) 6, T pux() e + cc.
By ux(r 1) = — 12 n)*2 &, LoD e ™ + cc.. (69)
In comparing (69) and (63) one discovers that one has simply inverted E |

and ¢B and changed the sign of one of the two fields. All of the
conclusions of the previous section can be carried over without any

difficulty.
GENERAL REFERENCES AND FURTHER READING

Akhiezer and Berestetskii (Chapter I), Berestetskii, Lifshitz, and Pitayevski
(Chapter 1), Jackson (Chapter 16), Blatt and Weisskopf (Appendix B).
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COMPLEMENT C;

EXERCISES

Exercise 1. H and P as constants of the motion.

Exercise 2. Transformation from the Coulomb gauge to the Lorentz
gauge.

Exercise 3. Cancellation of the longitudinal electric field by the in-
stantaneous transverse field.

Exercise 4. Normal variables and retarded potentials.

Exercise 5. Field created by a charged particle at its own position.
Radiation reaction.

Exercise 6. Field produced by an oscillating electric dipole.

Exercise 7. Cross-section for scattering of radiation by a classical
elastically bound electron.

1. H AND P AS CONSTANTS OF THE MOTION

a) Show that the energy of the system particles + electromagnetic field
given by

H= ;%ma v+ %Ojd:‘r[Ez + ¢* BY ¢

is a constant of the motion.

b) Derive the same result using the expansion of the transverse field in
normal variables.

¢) Show that the total momentum

P:Zmav1+80jd3rE><B )
is also a constant of the motion.

Solution

a) One calculates

dH dv, 3 E .o (B
E:Z}Zm,,val dt+£0J‘dr|:E T B W] 3

and substitutes for dv,/d: using the Lorentz equation and for dE/d¢ and dB/dr using
Maxwell’s equations. This gives

({Tit{ =3 v, (g, E(r, 0) + & J‘d3r[E . ((‘2 VxB-— F—l-]> —B-(V x E)] @
P 0

since v, - (v, X B) = 0.
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Substitute (A.5.b) for j into fd*r E - j. One gets

Jd3r E-j=YEr,. - (V). (5)
Now evaluate

JdJr[B-(VxE)—E-(VxB)]:Jd%V-(ExB) 6

which can be transformed into a surface integral which is zero when the fields are zero at
infinity. Using (4), (5), and (6), one gets

dH
5 =0 )

b) In terms of normal variables, the energy is given by

H = Z%ml v+ stk

p¥p S+ Z Jd k— [1;* a, + o, xF] (8

Calculate d H/dt. Here dv,/d¢ is given by the Lorentz equation. As a result of charge
conservation p is equal to —ik - s, Equation (C.8) gives a,. One then gets

dH &k S
7 =) 4. V:'E(T,J)+sz[l(k'l*)0— ik ) p*] -

i " d%k - .
*RZ R Hol(e - j*) o, — () «¥] (9
Now, using (B.19), we write & = —ipk/egk?. The second term of (9) can then be written
1 . .
*EJdSk(‘g“ Jr+EFf) = — [d%EH -j. (10)

To evaluate the last term of (9) note that j *(—k) = 4(k). Since 4" (—k) = A7(k), one can
write the last term as

i

d .
2—80 }ZJ\ (k) hu)[a(*(k) o — k)] £+ j(k). (i

Using A7(k) = y/hw/2¢, and (C.6.2), (11) becomes

- Jd3k EX = — Jd-‘rlzi <. (12)

One can see that (10) and (12) cancel the first term of (9).

¢) Calculate dP/d and use the Maxwell-Lorentz equations to reexpress dv, /dz, IE/d1,
and dB/dr

dP dvz ‘E B
512’71’—7+80Jd3r[WXB+EXF] (13)
dp

- Zq, E(r,, 1) + qu v, x B(r,, 1) +

+£0Jd3r|:<c2V>< B—r—1j>>< B~ E x(Vx E)] (a4
]
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Now Equation (A.5.b) gives
‘JdBrjXB:’Zq,v,xB(rl,f) (15)

which cancels the second term of (14). In addition, for a vector field X

1

X x (V ><X)=5V(X2)—(X'V)X

=§V(X3)f2eiV-(XjX)+X(V-X) {16)
J

The integral over all space of the first two terms of the right-hand side of (16) can be
transformed into a surface integral which is zero if the field decreases sufficiently rapidly at
infinity. As for the last term, it is zero for X = B and is equal to Ep/¢; for X = E. Using
(A.5.a),

- & [d%Ex(VxE):qu,E(rz,t) (17)

which cancels the first term of (14). Finally, Equations (14), (15), and (16) give dP/d¢ = 0.

2. TRANSFORMATION FROM THE COULOMB GAUGE TO THE LORENTZ GAUGE

Assume the potentials &/ and % are known in the Coulomb gauge.
What equation must be satisfied by the gauge function % which trans-
forms & and % into the potentials in the Lorentz gauge?

Solution

Let &7’ and %’ be the new potentials. The Lorentz condition (A.13) in reciprocal space is

ik-,r/wi{,:o (1
&' and %’ can be written as functions of & and % using (B.8). Combining (1) and (B.8),
one gets
. o | IS
1k-(x/+1k~¢)+(7—3(///<’/‘)=0A (2)

The transversality of & in the Coulomb gauge gives then

1 -
(,—z"+’\'27‘=7 (3)

s0 that, using the expression for % in the Coulomb gauge,

Lo e ik vy e
A G Vs PPN @

It is clear that % depends on the velocities v,. It is for this reason that transformation from
the Coulomb gauge to the Lorentz gauge is not equivalent to a change in the Lagrangian (sce
Remark i of §B.3.5, Chapter II).
Note finally that Equation (3) can be written
nF - 5. ®
in real space. ‘
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3. CANCELLATION OF THE LONGITUDINAL ELECTRIC FIELD BY THE
INSTANTANEOUS TRANSVERSE FIELD

A particle with charge g, is located at the origin 0 of the coordinates.
In the interval 0 to T the particle is displaced from O to r (7") along
a path r(t) (0 <t<T) Letr be a point distant from the origin
(r > |r (1)}, cT). The purpose of this exercise is to prove, starting with
Maxwell’s equations, that the instantaneous variations of the longitudinal
electric field created by the charge ¢, at r are exactly compensated by the
instantaneous component of the transverse electric field produced by the
displacement of the particle.

a) Calculate, as a function of r,(7), the longitudinal electric field
E (r, 1) at point r and time ¢ from charge g,. Show that E (r, 1) can be
written

E((r, ) = E|(r,0) + 0E(r, 1)

where SE, is given by a power series in [r,(¢)|/r. Show that the
lowest-order term of this expansion can be expressed as a function of
q.7.(t) and of the transverse delta function 8,7 (r).

b) Find the current j(r, ¢) associated with the motion of the particle.
Express the transverse current j, (r, ¢) at the point of observation r as a
function of g i, () and the transverse delta function 8,1*. (r — r,(t)). Show
that to the lowest order in |r (¢)|/r, one can replace 8,1*. (r —r (1)) by
8,7 (r). Write the Maxwell equation giving JE  (r, 1)/ as a function of
j. (r,t) and B(r, t). Begin by ignoring the contribution of B to JE /d:.
Integrate the equation between 0 and 7. Show that the transverse electric
field E | (r, r) produced by j, (r, r) compensates exactly (to the lowest
order in |r,(7){/r) the field 8E(r, 1) found in part a).

¢) By eliminating the transverse electric field between the Maxwell
equations for the transverse fields, find the equation of motion of the
magnetic field B. Show that the source term in this equation can be
written in a form which only involves the total current j. Justify the
approximation made above of neglecting the contribution of Bto dE | /d¢
over short periods.

Solution
a) From §B.4, E,(r, 7} is the Coulomb field created by the charge g, at time ¢
Efr, ) = = VU [§))]

with

Uy =91 2
: dmey |1 — (1)}
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Expand U in powers of |r,(f)]/r:

U=V
PO e, Tn
r—— 4
;
_ Y% _+r'r(t) i 3)
4 TEg r '
Substituting (3) in (1), one gets for the ith component of Er,t)(i=xy 1)
E(r 1) = Er,0) + (5EHL-(r, t) @)
5 = _ r 11
where OE(r.0) = — 7 Hfo Z
_ Y N _3ri",' 7.0 5
T 4me ; <0ij r Jor ©)

Comparison of (5) with (B.17.b) gives, taking account of the fact that r is nonzero,
0L {r. 1) Z Oi(r) gy o (1) - (6)
b) Following (A.5.b),

J 0 = g, 1) 0(r — 1(0). ™
(B.16) then gives

j“(l‘, 6= Z [da ' ()1_(]. - r,)jj(ﬂ t)
= Z {r — r(0) g, 10 8

Since |r — r ()| is nonzero, 8l(r r, (1)) varies as |r — r (¢)] >, which in the lowest
order in |r,(¢)|/r goes as r~ One can write then to this order

jur 0 = Zf)*(r ) Gy Faf(0) . )

The Maxwell equation (B.49.b) in real space is written

E(x. 1)

1
_ 2 _ :
i =c*V x B(r, 1) 5 jur 0. 10)

For ¢ < 0, the vectors E | , B, and j, are zero. If one ignores the contribution of B, the
integral of (10) between 0 and ¢ gives

1 13
E frn)=— :_J dr j {r. 1) (11
0

‘0
which, taking (9) into account, becomes

E(r0) = — Z_;Z H(r) J P de
o .

--Ly 541 4, 1) (12)
SO 7

Comparison of (6) and (12) shows that E  (r, r) at each instant cancels 8 £, (r, ).
¢) The elimination of &, between the equations (B.49) gives

[ 2 1. _ 1. :
— B =— = - k 13
6213+k B P ik x —18061 X (13)
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since k Xj\l = 0. In real space, (13) becomes

I & i

Since the source term, which involves j, is localized at r = 0, the solution of (14) is purely
retarded and has no instantaneous term. B(r, 1) is identically zero on the time interval
[0, 7/¢], and it is permissible to ignore the first term of the right-hand side of (10) over this
interval.

SV x (1) (14)

3

4. NORMAL VARIABLES AND RETARDED POTENTIALS

a) Consider a set of charged particles producing a current j(r, ).
Integrate the equation of motion of the normal variables of the field, and
write the normal variables at time 7 in the form of an integral of the
current between —oo and t. Derive the value of the vector potential
&/ | (k, t) in reciprocal space.

b) Calculate, using the results of @), the potentials in Coulomb gauge
in real space.

c¢) By again starting with the results of a) in reciprocal space, find the
total electric field &(k, ¢). Show that the electric field in real space is of the
form

* ’ |r - l./|
3 1 Nrt=—
Erx 1) = — — o Jd"’r’

c
Ctldmeyc ir—r|

l,,z_|l‘—l"|
1 3/p ’ c
- V]— | d°r (1)

4 TE, | r —r l
and that it has no instantaneous Coulomb term.
Solution

a) The solution of Equation (C.8) giving the motion of a(k, ¢) is

alk. 1) = J dire 00 — 1) 3 f(k D) (2)

i
& .V {k)

where 6(7) = 1 for + > 0, 8(7) = 0 for 7 < 0, and where A" (k) = ‘/hw72?0. Starting with
(C.29), one gets

of (k1) = T o
B

: : [ dr 0@ [e™ ik 1 — 0 — €%~ kot — D] )

so that, using the fact that j(r, 1) is real,

AUk 1) = {LJ drom 2 (ks — 7). (4

o ®
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b) The transverse potential is given in real space by

A = Jd3k e*r o7 (K, 1) ()

(2 7[)3 2

——that is, from (4),
_ 1 3 i or sin wt N ik
Ay = T o o Jd kJﬁ (1) —— Jd Fjrr—1e . (6)

Now, one can show that

I ,k'rr)smmr _ 1 . [r — 1]
Wjdke O(r) = iz |l'—l"|o T - " . 7

(One has just to perform the integration on the polar angles of k and then the integration on
k.) It follows that

o R G N R, _|r—r’|>. @
Adn D = Jd[ dr ﬁ()(T T )

In the Coulomb gauge, A(r, ) = A, (r,¢) and the scalar potential is the static Coulomb

potential (B.25.b):
; _ 1 i, Plro)
b(r”)74nno‘[dr|r~r’| )

U is an instantaneous term. In order that there be a finite velocity of propagation for the
E-field, a term in A | which compensates the contribution of (9) to E is required. Note that
A | is not purely retarded, since the transverse current j, which appears in (8) introduces a
nonlocal component.
¢) The electric field in reciprocal space is given by
& = — kU — o, (10)
Equations (9) and (4) then give

sin Tt -

.L(k«’*'f)

ik 1
(?(k.l):——_—7p(k.t)~f dr
&g k & J,

+ 5 o
K G oo - . .
_ '1 ok 1) — _J g St ik + _I_J dr sin wr”(k[_ .
£ k ® &g w T
0 0
(I

Integrate the last integral by parts:

l + ¥ . l + %
—J dt sin ot jilkot— 1) = ;—J drcos wt j(k t — 7). (12)
0

&g o

The continuity equation (B.6) allows one to transform (12) into

. + . ik ik (7 .
— 1sz dreoswtpk 1 — 1) = = plk ) = —5 | drosimnomk -1, (13)
to k . 69 k &g k o

Substituting (13) in (11), one finds

17" sinwrt: ik , [
sk 1) = — TJ dr S’“w“f kot —1)— ‘F—CZJ YT ki —n (14
0 0

0
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which, taking the results of part b) into account, gives Equation (1) in real space as required.
The electric field E is just the field derived from retarded potentials in the Lorentz gauge (*).
This proves that the instantaneous Coulomb term [the first term of (11)] has been compen-
sated for by a term arising from j, [the first term of (13)].

5. FIELD CREATED BY A CHARGED PARTICLE AT ITS OWN POSITION.
RADIATION REACTION

Consider a charged particle with charge g, mass m , and bound in the
neighborhood of the origin by a force F which derives from an external
potential energy V(r): F = — VV. The purpose of this exercise is to
calculate, starting with the equation of motion of the normal variables, the
field created by this charge at its own position and to get the expression
for the “radiation reaction” which results from the interaction of the
particle with its own field (**).

a) Find the current associated with the particle in real space and
reciprocal space.

b) Write the equation of motion of the normal variables a (k,7)
describing the state of the transverse field. Let a, be the order of the
spatial dimensions of the region in which the particle is bound about 0. In
this exercise only the modes ke of the transverse field for which k < k,,
with k,a, < 1 will be of interest. Write, to zero order in k,a,, the
equation of motion of a,(k, 7). Integrate this equation between the initial
time ¢, and ¢, and express a,(k, r) as a function of a.(k,?,) and the
velocity of the particle, f,(¢"), between 1, and 1. What is the physical
significance of the two terms one gets?

¢) In the mode expansion of the transverse fields E | and B one only
considers the contribution of the modes k& < k,,. Show that in that case
one can take E | (0, ) and B(0, t) as approximations to the transverse
fields at point r, where the particle is located. Using this approximation
(order zero in k,a,), give, using the results of b), the expression for the
transverse fields E | (0, t) and B,(0, t) produced by the particle at its
own position. Find the sum over the polarizations and the integral over
the angles of k. Show that B,(0, 7) is zero and that E ,(0, ) can be
written

t—to R
E x0 1) = 3—7;23?J dr r,(t — 1) d(7)
0¢ Jo

where oy

Sp(7) = 2_175J e " dw

is a 8-function of width 1/w,, = 1/ck,,.

(*) See Feynman et al., Vol. II (Chapter 21).
(**) See Feynman et al,, Vol. II (Chapter 28), Jackson (Chapter 17).
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d) Integrate the expression giving E | 5(0, ) by parts. Assume that
t — t, is very large with respect to 1/w,, and that r, varies slowly on a
time interval 1/w,,. Show then that E | (0, ¢) is the sum of two contribu-
tions, one proportional to ¥ (t) and the other to ¥ _(¢).

e) Write the equation of motion for the particle. Show that one of the
two terms arising from the interaction of the particle with its own
transverse field can be interpreted as describing a modification §m, of the
mass m, of the particle. Calculate dm,. What is the physical origin of
om?

/) To interpret physically the other term arising from the coupling of
the particle with E | ,(0, ), assume that the particle’s motion is sinusoidal.
Show that this other term then describes a damping of the particle’s
motion. What is the physical origin of the damping? Justify giving the
name radiation reaction to this term.

Solution

a) From (A.5.b)
i) =g, 5,00 0(r — 1) (1.a)

. 1 . .
jk ) = G ity e 0 (1.b)

b) The normal variable a,(k, t) obeys Equation (C.12), which using (C.15) and (1.b) can
be written

,,,,, — g+ I,(1) e k0 )

wk 1) + ok 1) =~
V2 8o w2 m)

—1Kk-r,

To order zero in k aq, one can replace e ¥ =) by 1 in the last term of (2). Integration of

() yields

iq,

a(k 1) = o(k, [O)Ciiu(li’M + —_—
J2 e ko2 )}

!
J dire T g (1), (3)

The first term of (3) represents a field freely evolving between #, and ¢ from the initial state
o (k, 1,). The second term describes the field created by the particle between ¢, and 1.

¢) The exponentials e ** %" appear in the mode expansion of the fields E, and B
evaluated at point r,. If the sums on k are limited to k < k,,, it is correct to order zero in
ks a, to approximate the exponentials by 1, which amounts to identifying the field at r, with
the field at the origin. To get the fields produced by the particle in its own position, it suffices
then to put the last term of (3) and its complex conjugate in the mode expansion of E , (0, 1)
and B(0, 1). One gets then for the i-component of E | ,

(Ep0,0) = Y J k* dk dQ x
k<kyv

j=as

Ya . o —iort -
X :gk (f 2‘"0(—2”)3> g, z,jJ dre rglt — T+ e (4)

]
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Summing over the polarizations gives

2, b= 0y - ‘;(7‘! &)

t1k

and the angular integral leads to

. ki k; 8w
Jd9<0,-,- - Tz') =3 9% @

with the result that

t—to +ka
E 0. 1) = — —& J driz(z—r)f dk k2 e 7k 7

66,1
0 Y —knr

One evaluates the integral (7) over k. This gives

+kar + o
| . 2n d? 1 ’ . 2me:
2 aicke _ b —iwr | _ _
J,k dk k*e = g [2 - ﬁ dwe ] - 0a(T) (8)
where Lo
dylt) = 5 [ dwe " (C))

is a delta function of width 1/w,,. Finally

E 0.1) = 4 3 J dir,(t — 1) ;;M(r). (10)
0

3meg ¢

An analogous calculation can be done for B,(0, ¢). The sum on the polarizations then
leads to an odd function of 8 = k/k whose angular integral is zero. One has then

By0.1) = 0. (1)

d) A double integration of (10) by parts gives, taking into account the fact that B'M is an
odd function of 7 and that 8§,, and 8,, are negligible for 7 = r — ¢,.

t =~ 1o

E ,0.1) =3 n‘fo P [— 3y (0) ¥ (1) +J

[¢]

de'r - 1) (5_”(1)‘1 . (12)

From (9), 8,,(0) = w,,/7. On the other hand, since ¥, varies slowly on the scale of 1/wy,,
one can replace ¥, (¢ — 7) by T,(¢) in the last integral and remove ¥,(r) from the integral,
which then is 1 as a result of the even parity of 8,,(7) and the fact that r — 1, > 1 /w,,. One
gets finally

Wy e
E 0.1) = — 3:—11'(—3 D+ n‘i T (13)
‘0 0

e) Since B, (0, ) is zero, the equation of motion of the particle is written

m ¥ (1) = = VV(r) + ¢ E p(0.7) + ¢, Eg. (0. 1) (14)
The first term describes the effect of the external potential binding the particle near the
origin, the second the interaction of the particle with its own transverse field (the interaction
of the particle with its own longitudinal field leads to a zero nct force through symmetry).
and the last, the interaction with the free field [E.. is associated with the first term of (3)
and describes possible incident radiation).

Substitute (13) in (14) and bring the term ¥, to the left-hand side. One gets then

2
4z

S s Y
(m, + om,) (1) Vir,) + 8 g <

= T + ¢, Eq o (0.1) (15)



C,6 Exercises gA |

where 8m, is given by
43 ky
3ntey e
The term in ¥, in (13) then describes a modification of the mass of the particle which can be
interpreted as the “electromagnetic inertia” of this particle.
It is possible moreover to relate n1, to the Coulomb encrgy €., of the particle. Indeed,
if one introduces the same cutoff at k,, in the integral (B.36) giving &, one gets

dm, = (16)

l[l I\'A\[ 3. 2
2 x 5 2 17
((‘oul 4 n..’ KO 4 G ’nz ¢ ( )

To within a factor %, the energy 8m¢? associated with 8m,, is the Coulomb energy of the
particle.

/) 1f the particle undergoes an oscillatory motion of frequency w, one can replace t, by
—w’#,. The second term of (15) then describes a frictional force ~(g2w? /6meyc? )i, which
dampens the motion of the particle. This force is nothing more than the radiation reaction
describing the loss of energy of a charged particle undergoing accelerated motion—loss
resulting from the radiation which it emits (see Exercise 7).

6. FIELD PRODUCED BY AN OSCILLATING ELECTRIC DIPOLE

A microscopic emitting system is made up of a particle with charge
-q, fixed at the origin and a charge ¢, undergoing a motion described by

r(t) =ajcosw,t. (1)

One is interested in the field produced by this system at a great distance
from the origin, that is, where r > a, (this corresponds in reciprocal
space to wave vectors such that ka, < 1).

a) Find the charge and current densities associated with the system as
well as their spatial Fourier transforms. Expand the latter to first order in
a,. Derive expressions for j(r, 7) and p(r, ¢) to first order in a,.

b) By substituting the expressions so found into Equation (1) of
exercise 4, show that the field E(r, 7) radiated by the dipole can be written

4y

cos(kyr — wyt)
4 e, ’

E(r,7) = (k5 ap + Vi(a, - V)]

)

Show that E is a sum of three terms in 1/r, 1/r2, and 1/r’ respec-
tively (*).

¢) Show that E(r, ¢) can also be written as an electric dipole wave such
as those defined in Complement B, with J =1 and M = 0, Oz being
taken along a,. The spherical Bessel function of order 1 is given by

sinx coswx

Jix) = 3)

R
(*) See Feynman et al., Vol. II (Chapter 21).
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Solution
a) Using (A.5.a) and (A.5.b), one gets

p(r. 1) = q,0(r — 1) — q, 8(r) 4.9)
o =q,1,6r—r). (4.b)

The expansion to first order in a, of the spatial Fourier transform of (4) gives

p(k, 1) = (77%(6% )~ - (-2%(11( 1) (5.a)
jk 1) = (__2_% l',le—ik.r, ~ (2(1:[;;2' (5.b)

Returning to real space, one gets

prt) = — ¢, V- r(nNdr) = — g,cos0, 1V *ay3(r) (6.a)
{ §0.0) = 4, 100 8(5) = — g, 0 5in 0 £ 2, 5(1) 6.b)

b) Put (6.a) and (6.b) in Equation (1) of Exercise 4, and consider first the contribution of
j. The first integral in »’ yields, taking into account (6.b),

., lr—1r|
1 nrt- ¢ a, Wy sin(kyr < w4 i)
str« _ 49230 0 0 ol N

4 mey c* ir—r] eI r

Following Exercise 4, the contribution of j to E(r, 1) is gotten by differentiating (7) with
respect to ¢, which gives
q, 8o ki cos (kg r — wq 1)

4 ne, r @®
The second integral in ' in Equation (1) of Exercise 4 can be written using (6.a) as
__4a 3000 e . S
T Jd FAE = E )V, - agd(r)] O
where
u
cos m0<t - ?>
S = ————. (10)
Using the identity
/VN-A=V:-(;A)— AV, 1
allows one to transform (9) into
Ya 30 500 . ooy — xR T _Ya vy 1
oo jd P o) ag Vo x = F) = - gm0 = — a0 (1)

“ollowing Exercise 4, the contribution of p to E(r, ¢) is gotten by applying — V to (12),
which gives, using (10),

cos(kgr —wy 1)
—

4 V(a, - V) (13)
€o

47

The sum of (8) and (13) gives Equation (2) as stated.
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Calculating the double spatial derivative in (13) gives

_ r@y - cos(kgr —wy 1)
E(r 1) = 4 ne, [3 r? aOJ 3 +
9o ra, ‘1) _ o sin(ky r — g 1)
+ 4 me, [3 r? aoj’ ko IR +
4, r(ag " r)| ,cos(kyr —wy 1)
ﬂ‘ﬁgo[ao~ pe —lkg 2 p 2. (14)

One gets the well-known three terms of dipole radiation, behaving respectively as 1/r, 1 /r2,
and 1/r3.
¢) To make the connection with the multipole waves defined in Complement By, it is
useful to introduce the radial and tangential components of a, with respect to r:
r(a, - r)
a, = —e—
or 2

2, = 28, — 3 (13

Equation (14) can then be written in the form

[kg cos (kg r —wo 1) kosin(kor — wyt)  cos(kyr — w, t)] .
01| - -

P2 3

E(r, 1) = 4‘1’ a
ne, r r r

+

4. am[z ko sin(ky r — wy 1) N 2 cos(kog — W, z)] 16)

2
4 ne, r r

Compare this with the results of Complement B;. The electric field of an electric dipole wave
is, using (63), proportional to I; ;> (r) with J =1 and M = 0, the Oz axis being taken
along a,. We now apply Equation (62) of complement B; to this particular case. The
spherical vector functions Z;,(r/r) and Ny,(r/r) are derived from the spherical harmonic
Yio(r/r), whose value, to within a constant factor, is

Y10<£>xa°.r4 (17
r ag r
Using Equations (33) and (38) of the complement, one finds, with (3),
N,o<l) Sl (18.2)
r a, r’ a,
1 T 1 (a, - m)r a
y/ (E)=_rv< ): ,[a - o ]: o (18.b)
A, \/2 o’ ao\/Z ° r’ ao\/2

Equation (62) can then be written

Lo (r) o = l { B _d [— cos (ko 1) + o ko le +

/2 d(k, r) kor
80, _cos k r sin ko r
ol (ko r)
n n
< ) sin <k0 r— 5) cos <k0 r — 5>
- +

7 73
kor kyr

|:sir\ <k0 r - E) cos <k0 r— E)
2 2
+ /

k2 #® ) (19)

X &y,
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Thus to within a multiplicative factor and a phase one gets (16). It is also useful to note that
(16) is a traveling wave, while (19) is the amplitude of a spherical standing wave resulting
from the superposition of an outgoing and an incoming wave.

7. CROSS-SECTION FOR SCATTERING OF RADIATION BY A CLASSICAL
ELASTICALLY BOUND ELECTRON

A classical electron with charge ¢ and mass m, elastically bound to the
origin by a restoring force —muwir, is set into forced motion by an
incident monochromatic wave with frequency w and emits into all space
radiation of the same frequency. The purpose of this exercise is to
calculate the total scattering cross-section o(w) of the electron and to
examine its order of magnitude as well as its variation with w (*).

a) The electron undergoes forced motion along Oz with amplitude a
and frequency w:

Z =dacoswt. )

One recalls that the total radiated electric field at a distant point M
(OM > \ = 27c/w) is in the plane (Oz, OM), is normal to OM, and has
an amplitude (**)

E = ﬁi sin 0 w? cos w(r — £> (2)
4dmegc r ¢

where r is the distance OM and # is the angle between Oz and OM. The
field B has an amplitude E/c¢ and a direction parallel to OM X E.

Find the mean value (over a period 27/w) of the flux of Poynting’s
vector g,c’E X B through a sphere of very large radius r, and find
dW /d¢, the mean energy radiated per unit time.

b) The interaction of the electron with the field it creates at its own
position can be described by a force, called the radiation reaction, whose
component along Oz has the value (***)

2

-1 (3.a)

- 3
6 ey C

For the forced motion (1), find the mean value (over a period 27 /w) of
the work done by R on the electron. Compare this result with that from
a). What is the physical interpretation?

(*) See Jackson (Chapter 17).
(**) These properties can be gotten from the results of Exercise 6.
(***) See Exercise 5 for a demonstration of this result. The interaction of the electron with
its own field is also responsible for a change §m in its mass, which is assumed to be included
in the mass m used here.
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¢) One writes the radiation reaction in the form

2 ry m?
R=% = — 3.b
3 Ag g ( )
where r, is the classical electron radius given by
2
ro = o (4)

= "
4 e, me

and X, = c/w,. In the absence of incident radiation, the dynamical
equation for the electron is written

5

m: = — mwiz + —q——32 (5)
6 mey €
R (which is proportional to the factor r,/A, < 1) can be treated as a
perturbation. Find the solutions of (5) of the form e and show that, to
first order in r,/A, one has

Q=+ w, + 17". (6)
Give the expression for v, as a function of ry, «,, and c. What does the
time 7, = y; ' represent?

d) In the presence of an incident field polarized along Oz whose
amplitude at the origin is Ecoswt, the dynamical equation for the
electron is written
_

Z =2 + qEcos wr. (7
ey €

mz = — mw§z +

Find the forced oscillatory motion of the electron and, using the results of
a), the energy radiated per unit time into all space by the electron.

e) Find the energy flux (averaged over one period 27 /w) associated
with the incident wave, which is assumed to be plane and propagating
along Ox. Using the results of d), find the total scattering cross-section
o(w). Express o(w) as a function of 73, @, w,, and yo.

f) Assume w < w, (Rayleigh scattering). Show that o(w) is then
proportional to a power of w, which should be found.

g) Assume @, < w < ¢/r, (Thomson scattering). Show that o(w) is
equal to a constant.

h) Assume finally w near w, (resonant scattering). Show that the
variation of a(w) with w — w, exhibits a resonance. What is the width of
the resonance? What is the value of the cross-section 6(w,) at resonance?
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Solution

a) The flux of the Poynting vector through a sphere of radius  is equal to

2 4 o2
2 r 2 qa w* sin? 0
= Co$ - - Qrg| —— .
¢ = cos w<t c) Jd r ro<4 n£0> P e 2 (8)
After angular integration, one finds for the average value of ¢ over one period
- 1 ¢ dot
¢ = 34 ey P ©

& is just the energy radiated per unit time, dW/dz, by the oscillating charge.

b) During time dt, the charge is displaced by dz = Zdt, and the work dW’ done by R is
equal to

.

Tzde. (10)

= —
6 e, ¢

From (10) it follows that

dw’ g . q* d .. w2
_d_t—A67I£0('3LZ—‘61180(’3 d_t(zz)“ (1)

Let us take the average of (11) over one period 27 /w. Since ZZ is a periodic function of ¢
with period 27/w, the average of d(ZZ)/d¢ is zero. As for the average of #2 its value,
according to (1), is a%w*/2. Finally,
w N
d¢ —4121180(’[10) a ¢~‘—Ft_'

(12)

The mean work per unit time which R does on the oscillating charge is equal, except for the
sign, to the mean energy which this charge radiates into all space per unit time. The radiation
reaction thus describes for the electron the dissipative phenomenon associated with the
radiative energy loss.

¢) Replacing z by e in (5) gives, using (3.b) and X, = ¢/w,
3
Q' ~ o) =iz 2 —. (13)

To zeroth order in ry/A,, £ = +w,. To first order, one can replace 2 by +wj on the
right-hand side of (13), and 2% — W by (€ — w2+ wy) = +2,(2 F ), which gives
(6) with

=2 log = In %

=37, 3¢

14

If w, is an f or optical frequency, r, < X, and y, < w,. The time 7, = vo ! is the decay
time of the oscillatory energy due to the radiative energy loss. With wgr, > 1, the electron
undergoes numerous oscillations during decay.

d) Assume
== Re(z, €. (15)
One then gets, substituting (15) in (7),
4qE 1
Ih 2 — ————————— i
0= ; (16)

«
2 e

wy — 0+ 17—

Wy



C,.7 Exercises 77

To get the mean energy radiated per unit time in steady state, it is necessary to replace a? by

|20\2 in (9), which then gives

1 ¢ ¢ E? w* 1 o

t 3 4me, mE - T )
[wg — 1"+ v—=

wy

¢) The incident flux &, is equal to

— E?
b = to 5 (18)
which gives for the total cross-section o(w)
1 dw

(7((;)) = — _[_ = 8_1[ ré ) = (19)

¢ (03 — 0 + 75 =

Wy

) If w < wy, the denominator of (19) is of the order of w3, which gives
8n o w\*

<K wy = o(w) = 35 1(2,(@) . (20)

The total scattering cross-section varies as the fourth power of the incident frequency.

g) The condition w < ¢/ry, which indicates that the wavelength of the incident radia-
tion is very large compared to 7, shows in view of (14) that * > y3w® /wg. If in addition ©
is very large with respect to wy, the denominator of (19) reduces to w*, which shows that

¢ 8n
g € W<€ — = o(w) = = rg @2n
Fo 3
which is just the Thomson scaltering cross-section.
hy Near resonance, in (17) one can replace yjw®/wj by Yewd, (wh — w’)? by
daf(w — wy)?, and in the numerator w* by wf, which yields

(3%

n w3

w~w, = dw)= =5 re

2

2 ‘0
w — + =
(¢ o) a
The resonance variations of a(w) are those of a Lorentzian with total width at half
maximum

Awg = Vo - (23)

At resonance, the value of a(w), using (14), is

olwg) = — —r T3 (24)
+0 ~
where
2 e
Ag T T (25)
(l)o

is the resonant wavelengih.

For optical radiation. A, is of the order of 5 x 10”7 m, whereas #, is of the order of
28 x 1015 m. One has then about 16 orders of magnitude difference between the resonance
cross-section (24) and the Thomson cross-section {(21).






CHAPTER 1I

Lagrangian and Hamiltonian Approach
to Electrodynamics.
The Standard Lagrangian
and the Coulomb Gauge

Classical electrodynamics, which has been presented in Chapter 1
beginning with the Maxwell-Lorentz equations, can also be derived from
a very general variational principle, the principle of least action.

In classical mechanics, the principle of least action allows one to select,
from all the possible “paths” leading from a given initial state to a given
final state, that path which is indeed followed by the system. (See for
example, Figure 1, corresponding to a system with one degree of freedom.)
One associates with each path a number, called the action, which is the
time integral of an important function, the Lagrangian, and one seeks the
path for which the action is an extremum.

x4

X,

Xy

|

|

|

|

LM, ',
i

|

Il |

L 15 14

Figure 1. “Paths” connecting the initial state x;, ; with the final state x,, t,. The
true path, that one followed by the system, is that for which the action is an
extremum.

The Lagrangian formulation of classical electrodynamics, using the
principle of least action, was first put forward by Schwarzschild in 1903. It
required the generalization of the usual Lagrangian formalism to the case

79
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where the dynamical system has an infinite number of degrees of freedom.
Indeed, to specify the state of the electromagnetic field, it is necessary to
give the values of the fields (or the potentials) at all points in space.
Beyond its uncontestable compactness and aesthetic character, this formu-
lation has the advantage of introducing all the quantities necessary for
canonical quantization without ambiguity (Hamiltonian, momentum). In
addition, recent progress in quantum field theory, such as the unification
of the electromagnetic and weak interactions, is based on such a formula-
tion of the theory.

In Part A of this chapter, we briefly review the essentials of the
Lagrangian formalism in the simple case of a system having a discrete set
of degrees of freedom. The generalization to systems having a continuum
of degrees of freedom is then examined, as well as some results relevant to
the use of complex variables in the Lagrangian formalism. It is clear from
Chapter I that the equations of electrodynamics have a more transparent
structure in reciprocal space. The variables which define the field are then
complex.

Part B is devoted to a presentation of the standard Lagrangian formu-
lation of classical electrodynamics with a nonrelativistic treatment of the
particles. One shows that the Lagrange equations associated with a certain
Lagrangian (the standard Lagrangian) reduce to the Maxwell-Lorentz
equations. In fact, the standard Lagrangian uses potentials to describe the
electromagnetic field; this results in redundant degrees of freedom, which
causes certain difficulties, particularly when one tries to quantize the
theory. One method for resolving these difficulties consists in eliminating
certain degrees of freedom such as the scalar potential and in using the
- Coulomb gauge.

Part C is precisely devoted to a presentation of electrodynamics in the
Coulomb gauge and to a discussion of several important aspects of this
theory. One sees how the application of the Lagrangian formalism in this
gauge as well as the Hamiltonian formalism allows one to proceed to a
canonical quantization of classical electrodynamics and then to justify the
commutation relations introduced heuristically in Chapter L.
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A—REVIEW OF THE LAGRANGIAN AND
HAMILTONIAN FORMALISM

We will review here, without going into detailed calculations, the
general Lagrangian and Hamiltonian formalism for a finite number ¢20)
and then for a continuum of degrees of freedom (§2). The reader who is
not familiar with the ideas introduced in §2 is advised to study Exercise 2,
dealing with a chain of linear coupled oscillators. The passage to the
continuous limit of such a system renders more plausible the results of §2
(the appearance of spatial derivatives in the Lagrangian density, replace-
ment of Kronecker symbols by the Dirac delta function, and so on).

1. Systems Having a Finite Number of Degrees of Freedom
a) DYNAMICAL VARIABLES, THE LAGRANGIAN, AND THE ACTION

For a system having N degrees of freedom, giving the N generalized
coordinates xy, ..., xy and the corresponding velocities Xy,..., Xy at a
given time completely determines the subsequent motion. The 2N quanti-
ties x,..., Xy and Xi,..., Xy form an ensemble of dynamical variables.
The accelerations X, ..., X can be expressed at any time as a function of
these variables. The resulting equations of motion are then second-order
differential equations in time. The motion of the system is determined by
integrating these equations.

It is equally possible to specify the motion of the system by means of a
variational principle. In the Lagrangian approach, one postulates the
existence of a function L(x, X, 1), called the Lagrangian, which depends
on the coordinates and the velocities (and perhaps explicitly on time),
such that the integral of L between times f, and ¢, will be an extremum
when x (1) corresponds to the real path of the system between ; and 1,
[the initial and final coordinates x;(1;) and x(1,) are assumed to be
known]. The integral

12
S = j L{x (1), x{1), 1) dt (A1)
5]

is the action, and the corresponding variational principle is called the
principle of least action.

In the mechanics of a point particle, the Lagrangian is equal to the
difference between the kinetic energy and the potential energy. In particu-
lar, for a particle moving in a time independent potential, the Lagrangian
does not depend explicitly on time. In the following, we will preserve for
isolated systems this time translation invariance and will not show an
explicit time dependence for the Lagrangian, which will be written
L(x,, %))
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b) LAGRANGE’S EQUATIONS

In the subsection above, two possible approaches to the study of
motion have been indicated: one local in time (the equations of motion),
and the other global (the principle of least action). We will review briefly
how the equations of motion can be derived from the principle of least
action.

In expressing the stationarity of the action with respect to variations of
path 8x,(¢) [provided 8x,(¢,) = 8x,(7,) = 0] about the real path followed
by the system, one shows that at each instant the dynamical variables
should satisfy on that path relationships which are equivalent to the
equations of motion. These are Lagrange’s equations:

-

d /¢ JL
a(‘) = (A-2)

The explicit derivation of these equations can be found in Complement
Ay and in a number of books (see the references at the end of the
chapter).

¢) EQUIVALENT LAGRANGIANS

The Lagrangian of a system is not unique. For example, if one adds to
the Lagrangian L the total derivative with respect to time of an arbitrary
function f depending on the coordinates x; and the time, one gets a new
function L'

L'(x;, 55, 1) = Lx;, X, 1) + (f—[f(xj, 0) (A.3)

which has the same properties as the initial Lagrangian L with respect to
the principle of least action. The action integral S’ relative to L’ is written
using (A.1) as

s = J L'dr =S + f(x0). 1) = [, 1), (A.9)

Since the initial and final positions are fixed, it follows that S and S’
differ only by a constant and thus have the same extremum. L and L’ are
then equivalent Lagrangians for the study of the dynamics of the system.
The transformation (A.3) then allows one to transform a Lagrangian into
an equivalent second Lagrangian.
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Remark

The function f must not depend on the velocities X;, so that the new
Lagrangian, like the original, depends only on the dynamical variables x, and
X, and not on the accelerations.

d) CONJUGATE MOMENTA AND THE HAMILTONIAN

The momentum conjugate to x; is defined as the partial derivative of
the Lagrangian with respect to the velocity X;:

_a

e
OX;

(A.5)

pj

The time derivative of p; is gotten by using the Lagrange equation (A.2):

. ¢L
p;= ﬁ—xj (A.6)
The simplicity of Equation (A.6) suggests the use of the coordinates and
momenta as dynamical variables rather than the coordinates and veloci-
ties. It is then preferable to substitute for the Lagrangian another func-
tion, the Hamiltonian, which is considered as a function of x; and p, and
is defined by

H(xj, p) =Z§cjpj— L. (A.7)
J
It suffices then to differentiate (A.7) and to use (A.5) to find that dH is

only a function of dx; and dp;, which leads to the following equations,
called Hamilton’s equations:

. cH
Xj—a (A8a)
. cH

J

In order to describe the dynamics of the system, the N Lagrange equa-
tions (A.2), which are second-order differential equations, have thus been
replaced by a system of 2N first-order differential equations (A.8.a) and
(A.8.b).

In comparison with the Lagrangian formalism introduced earlier, the
Hamiltonian formalism presents several advantages. First of all, if the
Lagrangian does not depend explicitly on time, H is a constant of the
motion which generally corresponds to the energy (*) and thus has a clear

(*) In certain cases one gets Hamiltonians which are different from the energy (se¢
Exercise 1). This is never the case here.
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physical significance. Additionally, the coordinates and momenta play a
more symmetric role than the coordinates and velocities [this arises for
example in the equations of motion (A.8.a) and (A.8.b)]. It follows that
changes of variable are a priori more flexible than in the framework of the
Lagrangian formalism, since one can mix the various coordinates and
momenta. Finally, the introduction of the momenta and of the Hamilto-
nian is essential for the quantization of the theory.

¢) CHANGE OF DYNAMICAL VARIABLES
1) Change of Generalized Coordinates in the Lagrangian

It may be useful, for the solution of a problem, to make a.change of
dynamical variables. In the framework of the Lagrangian formalism, only
changes of coordinates which substitute the coordinates X,,..., X, for
Xq,..., X5 such that

X = fXy o Xy) (A.9)

are allowed. The differentiation of (A.9) with respect to time gives the
relationship between the old and new velocities. The new Lagrangian is
gotten by replacing in L(x;, x;) the x; and X, as functions of X, and X,,
and the new action is equal to the old one.

The transformation (A.9) does not in general involve the velocities XA,
since the accelerations X, would then occur in the Lagrangian.

i) The Special Case Where a Velocity Does Not Appear in the Lagrangian

There is nevertheless a case where a transformation of the type (A.9)
including the velocities is possible. This is when one of the velocities does
not appear explicitly in the Lagrangian. It is then possible to completely
eliminate the corresponding degree of freedom and to substitute for the
initial Lagrangian a Lagrangian having fewer dynamical variables.

Assume, for example, that in the Lagrangian L, the velocity x, does
not appear explicitly. The Lagrangian L is then a function of N coordi-
nates and N — 1 velocities and will be written as L(x; 5 Xns X)) We will
show that it is possible to replace this Lagrangian by another Lagranglan

L which depends only on the N — 1 coordinates x,,..., x,_,; and the
— 1 velocities %, ..., Xy_;. The Lagrange equation relative to x, is
L _y, (A 10)
Xy

This equation allows one to express x, as a function of the N — 1 other
coordinates x, and the corresponding velocities X, so that

xy = u(x;, x)). (A.11)
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If in L one replaces xy by its equivalent (A.11), one gets a function of x,
and x, which is the Lagrangian L:

L(xj,y x;) = L{x;, u(x;, X)), X;). (A.12)

Note first of all that no acceleration appears in L in spite of the form of
the transformation (A.11). That is due, of course, to the fact that L does
not depend on x . To show that L has all the properties of a Lagrangian,
it is sufficient to note that, if the action relative to L is an extremum for
all independent variations of the coordinates x; and x, then that is also
the case for the action relative to L, in which x is fixed by (A.11).

Remark

One can verify directly that the Lagrange equations associated with L have the
expected form. We calculate, for this purpose, the partial derivatives of L with
respect to x, and X

~
s
~>
~

cL

~5

X

2

LoL s A.13.2)
cx; 0x; 0 Cxy (xg
cL CL CL (xy
L _ b Oy (A.13.b)
0%, X (xy 8%

When Lagrange’s equation (A.10) relative to x is satisfied, L and 1. have the
same partial derivatives with respect to x, and %,. Lagrange’s equations relative
to x, and derived from L thus involve those assoc1ated with L. Note also that
smce the last term of (A.13.b) is zero, the momenta conjugate with x, in L and

A

L are equal.

iii) Velocity and Momentum Transformation

It is interesting to establish the transformations for the velocities and
momenta when one changes variables in the Lagrangian. The equations
(A.9), allowing one to go from the old coordinates x, to the new
coordinates X, give by differentiation

5 = L ay X, (A.14)
with of,
ap = 75 (A.15)

We denote by p; and P, the momenta conjugate with x, and X,
respectively. One gets

& (A.16)
ch i éx; ?Xk
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that is, on using (A.14),
Pk:;pjajk' (A.17)

The equations (A.14) and (A.17) can be rewritten in matrix form. Denot-
ing by 4 the N X N matrix whose elements are a ,, and by (%), (X), (p),
and (P) the column vectors whose elements are X 5 X P and P,
respectively, one finds

(x) = A(X) (A.18.a)
(P)=A4'p). (A.18.b)
The transposed matrix A4’ is assumed to be invertible, so that, the relation-

ship between the momenta can be rewritten by going, as with the veloci-
ties, from the new to old variables:

(p) =AY (P). (A.19)

It is clear then that the momenta transform like the velocities only if the
matrix A is orthogonal.

iv) Changes of Variables in the Hamiltonian Formalism

The changes of variables in the framework of the Hamiltonian formal-
ism are inherently broader than the transformations of the form (A.9),
which depend only on the coordinates. Certain transformations of the
form

X, = g{xy ... Xy, Py .- PN) (A.20.a)
Py = hx; ... Xy, Py Px) (A.20.b)
are possible a priori. The equations of motion for the new variables X and

P have a form analogous to (A.8) only if certain restrictions are imposed.
One can show that the corresponding conditions are

{X.X;}=0 (A.21.a)
{P,P;} =0 (A.21.b)
{ X, Py} =0y (A.21.¢)

where the Poisson bracket {a, b} of the two functions a and b is defined
by

{a,b}=2<f}—”0—b—f—”f—b>. (A.22)

Quantities X and P satisfying (A.21) are called canonically conjugate.
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f) Use OF COMPLEX GENERALIZED COORDINATES
i) Introduction

Up to this point we have considered only the case where the coordi-
nates and velocities are real quantities. It can be useful to introduce
complex quantities for the resolution of certain problems. Consider, for
example, a Lagrangian depending on two coordinates x; and x, and their
velocities, and introduce the complex variable

1 4
X = ﬁ(XI + ix,). (A.23)

The Lagrangian is now a function of X and X* as well as their derivatives
with respect to time.

We will show below that the Lagrangian and Hamiltonian formalisms
can be generalized to complex coordinates X and X* [related to x; and x,
by (A.23)], and that all the results obtained above remain valid (with
certain amendments to the definitions, notably that for momentum)

provided that X and X* are considered formally as independent vari-
ables.

Remark

One could consider from the beginning a Lagrangian depending on complex
dynamical variables. One has however to keep in mind that the action must be
real, since the principle of least action involves finding a minimum of the
action. The Lagrangian is thus a real quantity and depends on both X and X*.

ii) Lagrange’s Equations

The passage from variables x; and x, to X and X* is linear and can be
inverted. One deduces the following relations:

¢L 1 | éL . 0L
cL 11éL . ¢l
= = - A.24.b
ax* ﬁ[axl i ﬁxz] ( )

and the similar expressions for the derivatives relative to the velocities.
The Lagrange equations for the complex variables are gotten then by
combining the Lagrange equations relative to x; and x,. One then gets
two Lagrange equations, one relative to X and the other to X*, which
have the normal form (A.2).
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iii) Conjugate Momenta

Rather than define the momentum conjugate to X by 8L/8X, we

prefer to take
2l *
p= <‘;> (A .25)
¢

To justify such a choice, note that the laws of transformation of the partial
derivatives (A.24) give

P = \%(1)1 +ipy). (A.26)
Comparison of (A.23) and (A.26) shows then that the real and imaginary
parts of the momentum P correspond respectively to the momenta conju-
gate to the real and imaginary parts of the generalized coordinate X,
which justifies the choice of (A.25). Equations similar to (A.24) for
velocities show in addition that

~ * ol
<‘L> S (A.27)
ox)  axe

In fact, this property is general and is a consequence of the real nature of
the Lagrangian. An equivalent definition of P is then
p=L (A.28)
X *

iv) The Hamiltonian

The Hamiltonian introduced in (A.7) depends on the quantity X X p,.
By applying (A.23) and (A.26), one easily sees that

X P 4 %ypy = XP* + X*P. (A.29)

It follows that the Hamiltonian H, expressed as a function of complex
variables, is

H=XP*+X*P—1L (A.30)
H is clearly real.
v) Change of Complex Variables

It is possible as above to imagine a change in complex variables
transforming an ensemble of complex coordinates Xj,.... Xy,
X;*,..., X3¥ to another ensemble Z,, ..., Zy, Z¥,..., Z. If one requires
that the momenta (defined in A.25) transform like velocities, there are
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certain constraints on the matrix of partial derivatives of the old coordi-
nates with respect to the new ones. A development analogous to that in
§A.1.e.ii shows that this matrix must be unitary.

g) COORDINATES, MOMENTA, AND HAMILTONIAN IN
QUANTUM MECHANICS

The various physical quantities of a system become operators in quan-
tum mechanics. These operators act in an abstract space called the state
space, which has the properties of a Hilbert space. The canonical commu-
tation relations between Cartesian components of the position and mo-
mentum operators x and p are equal to

[x,, x, =0 (A.31.a)
(P, P) = 0 (A.31.b)
[, P = 11 O - (A.31.¢)

In quantum mechanics, the state of a system is described by a vector |{)
of Hilbert space. One can at this stage adopt essentially two points of
view, either assuming that the state vector is fixed and the operators evolve
with time (Heisenberg) or assuming that the operators are fixed and the
state vector evolves with time (Schrodinger).
In the first point of view the evolution of a physical quantity G is
described by the Heisenberg equation
L d
1hEG=[G,H] (A.32)
where H is the quantum operator associated with the Hamiltonian. In
the case where the operator G corresponds to a coordinate or a momen-
tum, the equations derived from (A.32) are the quantum equivalents of
Hamilton’s equations (A.8).
In the second point of view, the operators are fixed and the evolution of
the state vector is determined by Schrodinger’s equation

Sy = HIY. (A.33)

Mathematically, the correspondence between these two points of view is
via a unitary transformation on the state vector.

Remark

In the case where a velocity does not appear in the initial Lagrangian, the
conjugate momentum associated with the corresponding coordinate is identi-
cally zero. This poses a serious problem for quantization, since it is then
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impossible to postulate the canonical quantization relation (A.31). One can
resolve this problem by eliminating from the Lagrangian the coordinate associ-
ated with this velocity (see §A.1.e.ii). The conjugate momenta are then calcu-
lated from the new Lagrangian (with a reduced number of dynamical variables),
and the canonical quantization relations (A.31) are then imposed.

The complex variables have been introduced in §A.1. /. We now exam-
ine the canonical commutation relations in this case. Equations (A.23) and
(A.26) show that

1

X, P]:E[)ﬁ + ix,, py + ip,) (A.34.2)
1 . ) .
[X,P*]= E[Xl +ix,, p, — ip,]. (A.34.b)

It follows then from (A.31) that

[X,P] =0 (A.35.2)
[X*.P]=0 (A.35.b)
(X,P*] =ik (A.35.c)
[X*, P]=ih (A.35.d)

(the other commutators, between two X or between two P, are zero). The
definition (A.25), which we have taken for the conjugate momentum, leads
to a nonzero commutation relation between the operator X and the
adjoint of the operator associated with the conjugate momentum.

2. A System with a Continuous Ensemble of Degrees of Freedom
a) DYNAMICAL VARIABLES

The state of the system is now determined by a set—no longer discrete,
but continuous—of dynamical variables. This extension is necessary in so
far as one wishes to study the electromagnetic field, which is defined by its
value at all points of space. We thus consider generalized coordinates
which depend on a continuous index (denoted by r, a point in three-
dimensional space, in anticipation of the application to the electromag-
netic field) and a discrete index j (which varies from 1 to N).

As with the discrete case, the coordinates 4 (r) and the velocities A (1)
defined by

. P
A1) = (f—[ Afr, 1) (A.36)
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form an ensemble of dynamical variables for the system. It is important to
stress the fact that in the Lagrangian formalism developed below, r is not
a dynamical variable but an index (of the same nature as j).

b) THE LAGRANGIAN

The Lagrangian L, which is a function of the dynamical variables 4 (r)
and A,(r) (where j and r take on all possible values), can have a very large
variety of structures. We assume here that one can write

L= J‘d% & (A.37)

where the function & is called the Lagrangian density. & is a real
function of the coordinates A (r), the velocities 4 ,(r), and also the spatial
derivatives (denoted 9,4; with 9, = d,, d,, d,) whose presence simply
shows that the motion of the coordinate A (r, 1) is coupled to the motion
at a neighboring point in the same way as, in a problem with discrete
variables ¢, the motion of g, depends on g, _, and g, (see Exercise 2).
It should be clear that these spatial derivatives are not new independent
dynamical variables, but rather linear combinations of generalized coordi-
nates. One can include a priori in the Lagrangian density the spatial
derivatives of all orders (remember, though, that only the first-order time
derivative is allowed). Now taking into account the later application to the
electromagnetic field, we will only study Lagrangian densities of the form
L(A;, Aj, 9,4)).

Remarks

(i) One can imagine an explicit dependence of & on the point r and the time ¢.
We will not show that, to prevent overburdening the notation.

(i) The Lagrangian density that is used in electrodynamics contains spatial
derivatives. Such a structure can easily be understood. Maxwell’s equations
describe the motion of fields coupled from point to point in space, and the
absence of spatial derivatives in the Lagrangian density would lead to a theory
where the field evolves independently at each point in space. The fact that the
Maxwell equations involve the spatial derivatives of the field requires taking a
Lagrangian density that likewise depends on the spatial derivatives. This
suggests studying the Lagrangian density in reciprocal space rather than in real
space, since it has been seen in Chapter I that the Maxwell equations are
strictly local in reciprocal space. We will return to this point in Part B of this
chapter.

¢) LAGRANGE’S EQUATIONS

In going from the discrete case to the continuous one, most of the
equations written in §A.1 remain formally valid. However, certain opera-
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tions (the derivative of the Lagrangian with respect to continuous vari-
ables, for example) are not mathematically obvious, and it will be useful
to explain certain points in more detail.

Note first of all that the action S is, as in the discrete case, the time
integral of the Lagrangian. By reason of the form postulated for the
Lagrangian density, we can then write

12
S = j dr jd3r$(Aj, A, 0,4)). (A.38)

ty

The principle of least action is of course unchanged; § is an extremum
when A (r, 1) corresponds to the actual motion of the field between times
t; and t,. 4

To establish the equations of motion, one uses the principle of least
action. The same steps can be followed as in the discrete case; one studies
the modification of S when the field is varied by the quantity 64 (r, 7)
with respect to the path for which § is extremal {84 (r, ) being zero at
the temporal limits ¢, and ¢, of the integral and likewise when |r| tends
toward infinity]. By stating that S is extremal one then gets (see Comple-
ment A ;) Lagrange’s equations, which can be written in the form

££ ééf —-géi _ 2: A ¥
dr ;= @4, A

. i=xy.z
J

(A.39)

Remark

Equation (A.39) uses the Lagrangian density %, and not the Lagrangian L as
in the discrete case (A.2). However, it is possible to write (A.39) in a form
identical to (A.2). To do this, the notion of a “functional derivative” must be
introduced (the extension of the idea of the partial derivative in the continuous
case), and this is discussed in Complement A;. The introduction of the
Lagrangian density is mathematically convenient in the sense that, since £
depends only on a finite set of variables, the use of the partial derivative is
perfectly clear.

The Lagrangian of a continuous system, like the Lagrangian of a
discrete system, is not unique. One can add to the Lagrangian density the
time derivative of a function and the divergence of an arbitrary field (but
one which tends to 0 sufficiently quickly at infinity), possibly depending
on the generalized coordinates 4 (r):

P =2+ Lhamrn + T AmED. (A4

To calculate the new Lagrangian L', it is necessary to integrate &' over
space. The integral of ¥ - f then transforms into a surface integral at



1LA.2 Review of the Lagrangian and Hamiltonian Formalism 93

infinity, which vanishes by hypothesis, and L’ differs from L only by the
time derivative of some function. L’ is then equivalent to L.

d) CONJUGATE MOMENTA AND THE HAMILTONIAN

The conjugate momentum is defined in the continuous case by general-
izing the equations gotten in the discrete case. For a Lagrangian of the
type (A.37), the conjugate momentum associated with the variable 4 (r)
has a simple form as a function of the Lagrangian density:

%
2A(r)

I (r) = (A.41)

Remark

It is casy to understand why (A.41) is the generalization to the continuous case
of (A.5) for the discrete case. To see this we transform the integral (A.37)
defining the Lagrangian to a sum over small spatial elements of volume a’
centered on the points r,,(X,,, ¥, Z,):

Za J’{A(r A A e 2 Ai“mq. (A.42)
a -

The final argument in the bracket symbolizes the various quantities which, in
the limit a — 0, tend to the partial derivatives 9, 4,. The conjugate momentum
associated with the variable 4 (r,,) can be found, for the Lagrangian L, as in
the discrete case and is
M, = —Lo =g L (A.43)
CA[r,) cALr,)

It appears then that the conjugate momentum IT (r) defined in (A.41) is equal
to the limiting value of a4~ 3I'I“(rm) when a goes to zero. Now the limit of

9L,/ 04, ;(r,,) when a goes to zero is nothing but the functional derivative
of the Lagrangla.n 8L/ 84 | (r) (see Complement Ay, for more details). Equation
(A.41) can then be wntten in the equivalent form

L
(’*Aj(r)

myr) = (A.44)

A step analogous to that used in the discrete case allows one to go from
the coordinate—velocity pairs of dynamical variables (A (r), 4, (r))
another pair made up of the coordinate 4 ,(r) and its conjugate momen-
tum IT (r) and then to introduce the Hamiltonian H and the Hamiltonian
density 5#:

- Jd%ZHj(r) A(r) — L = Jd“r]f (A.45.2)
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A =Y 10 Afr) — & . (A.45.b)

Remark

It is similarly possible to introduce the momentum and the momentum density
of the field as well as the angular momentum and the angular momentum
density (see Exercise 5).

As in the discrete case, the introduction of the Hamiltonian formalism
introduces new dynamical equations (Hamilton’s equations). These can be
written simply using the Hamiltonian density 5 as

cH
iTen

(A.46.a)

~.

f",)

1. A .46.b
I, = o, Z p( = Aj) (A.46.b)
These equations can be written directly as a function of the Hamiltonian
H with the aid of the functional derivative (see Complement A ;). They
are then identical to Hamilton’s equations in the discrete case.

¢) QUANTIZATION

As 1n the discrete case, the fundamental commutation relation is
imposed between the operators associated with a coordinate and its
conjugate momentum. In the case where the field is expressed as a
function of its Cartesian coordinates and where the three coordinates are
independent dynamical variables, the canonical commutation relations
can be written

[4,(r), A,(r)] =0 (A .47 .2)
[[1,(r), ()] =0 (A.47.b)
[A(r), I,()] = ifi d,, o(r — ). (A.47.c)

Remarks

(i) In the continuous case, the Dirac distribution 8(r — ') has replaced the
Kronecker symbol of the discrete case. This can be understood if one recalls the
situation considered in the Remark of the preceding subsection (§A.2.4 ), where
the space was divided into cells of dimension . In that case, the rules of the
discrete case give

[Anr), Tofr)] = 15 0, Oy - (A.48)
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Since I1,,(r,) is the limit of a 3I1%(r;) when a goes to zero, it follows that
0
[A(r). I (r)] = i} 8, lim ZE‘I (A.49)
a—~0

8,, is 1 if r, and r, belong to the same cell of volume a?, and O otherwise. It
appears then that, given as a function of r, and r;, the limiting value of the
second term of (A.49) is just the Dirac distribution 8(r, — ;).

(i) The commutation relations (A.47) are valid only if the three components of
the field 4, 4, and A, are independent dynamical variables. We will see that
in electrodynamics there are situations where this is not the case. It is impor-
tant then to identify the truly independent dynamical variables in order to write
the commutation relations correctly.

The state of a system is described by a vector in state space, and—as in
the discrete case—one can treat the dynamics from the Heisenberg point
of view or from the Schrodinger point of view.

f) LAGRANGIAN FORMALISM WITH COMPLEX FIELDS

The generalization of the foregoing results to the case of a complex
field is particularly important, since in electrodynamics it is often most
interesting to study the equations in reciprocal space.

Consider now a Lagrangian L and a Lagrangian density % dependent
on the complex fields 2/, and their velocities MJ Since L must be real, &
must then depend on &/* and &/;*, with the result that

L= jd3k LA, Ay, Sl A, AF, ) (A.50)

—the integration variable being now denoted as k in anticipation of later
applications, and d, denoting d/dk,.

Remark

The electrodynamic Lagrangian is simpler than (A.50). Since Maxwell’s equa-
tions are strictly local in reciprocal space, so is the Lagrangian density. One
then does not get the derivatives d/dk, in the electrodynamic Lagrangian (on
the other hand, one has an explicit dependence on k& which arises from the
Fourier transform of the spatial derivatives). However, we will retain the form
of the Lagrangian (A.50) for the general considerations in this subsection, the
results providing on one hand application to other physical situations (see
Exercise 7, where the Schrodinger equation is derived from a variational
principle) and allowing on the other hand a clearer comparison with the
real-field case.
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Consider the following linear combinations:
A(K) + /(K)

NE
A (K) — A*(K)
N
which allow the replacement in (A.50) of the complex variables with the
real variables ; R(k) and &/ ’(k) It is then possible to develop the
Lagrangian and Hamlltoman formahsm previously set forth using these
real variables then to restate the equations one gets as a function of &/,
and «/*. Such a procedure has already been carried out in the disg:rete
case (§A.1.f), and we have seen that one gets the same result by
considering at once the complex dynamical variables and their complex
conjugates as independent dynamical variables. One establishes in this
way two Lagrange equations relative to &/, and &/ *:

o F(k) = (A.51.2)

A (k) = (A.51.b)

d ¢& &

dt o, c.of;

&
— Yoz A.52.
; e o) ( 2)

d 08 o8 v, 0F
di gox ol T AR

(A.52.b)

J

As for the momentum conjugate with the variable 7, (k), it is defined in a
fashion similar to the discrete case:

7 (k) =( & >* (A.53)
o.dk)

This choice assures one, as in the discrete case, that the real and imaginary
parts of TT,(k) are clearly the momenta conjugate with </, K and o/ It is
for this reason (see the Remark below) that we have chosen the deﬁnmon
(A.53) in preference to the usual convention [where one does not have the
complex conjugate in the right hand member of (A.53)].

The fact that .Z is real shows that (A.53) can finally be written

cE

T[j(k) = .
ol ¥(K)

(A.54)

which shows that the momentum conjugate with &/* is TE/.*.

Remark

The definition (A.53) of the conjugate momentum has another advantage when
the fields . (k) are the Fourier transforms of the fields A (r). The 7T(k) are
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then the Fourier transforms of the momenta [J (D conjugate with the variables
A, (r). To understand this result, first consider going from the coordinates 4, (r)
to the coordinates ., (k) as a change of variables to which the results of §A 1.f
can be applied. It has been stated there, for discrete variables, that the
momenta transform like velocities if the transformation matrix is unitary. This
property can be generalized to the continuous case and is clearly fulfilled by the
Fourier transformation. In addition, the transformation being linear, the coot-
dinates transform in the same way as the velocities and momenta. It is also
possible to give a direct proof of this result by using the definition of the
conjugate momentum in terms of the functional derivative (A.44). One can
write

‘;L = [d"r(j—L m (A.55)
ol (k) FA () (k)

Now, by differentiating the relation connecting the fields in real space with that
in reciprocal space [Chapter I, Equation (B.1)], one gets

ﬁ/&j(r) B e’k

ST o
Since Equation (A.53) can also be written
(k) = (; ‘ > (A.57)
&/ (K)
it follows that
1 .
n_’(k) = (_2—7.(73—2 (‘d:sl' Hj(l‘) e kT (A58)

which demonstrates that the conjugate momenta are transformed like the
variables.

g) HAMILTONIAN FORMALISM AND QUANTIZATION WITH COMPLEX FIELDS

To find the relationships involving the Hamiltonian density and
Hamilton’s equations or the canonical commutation relations, it is neces-
sary to start with the expressions found in §§A.2.d and A.2.e for the real
fields MJR and 57/, and to combine them to get the corresponding
expressions for the complex field. This has been done in the discrete case
(§88A.1.f and A.l.g) and here the results will be given without the
intermediate steps.

For the Hamiltonian density one finds

H =Y (W d + T o) — & (A.59)
J

which generalizes the expression (A.30) relative to the discrete case.
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Hamilton’s equations are written

.o
o ¥ =(2n4 (A.60.a)

J
A 5o H
odd, T &G,

T}

(A.60.b)
=

The canonical commutation relations for the quantized fields are finally

[, (k). T, (k)] = ih 6, ok — k). (A.61.b)

The other commutators between <7, (k) and 7, (k) or between 7T, (k) and
7, (k') are zero. As in the discrete case, the field operator and the adjoint
of the operator associated with the momentum do not commute.

Remarks

(i) In the foregoing, quantization has been accomplished by associating with
the dynamical variables and their conjugate momenta operators which satisfy
the commutation relations (A.61). In fact, the fundamental requirement with
respect to quantum theory involves the quantum equations governing the
evolution of the variables ./, and 77,. These equations, written

o

T . N
n 1 n

I
|
R
=

(A.62)
, = 17,

)
ES)
=

mean that the Hamiltonian is the generator of time translations. They must
have a form analogous to that of the classical equations
{ o, = CHIETLY

n

. (A.63)
T = — PH[CAX.

n

Such a condition is simply satisfied if one postulates the commutation relations
(A.61) between o/, and 7T, since these relations imply

n?

(o, H) = ih CH/ETL)
(A.64)

1T, H] = — ihi ¢H/&d," .

For certain quadratic Hamiltonians, it is equally possible to satisfy the same
requirement by replacing the commutators (A, B] = AB — BA with the anti-
commutators [A, Bl,= AB + BA in (A.61):

{ [,(K). T0,.(k)].
[, (k). T, (K)],

0

il

(A .65)

ind,, 5k — k)
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the other anticommutators being zero. For example, we show in Exercise 8 that
the quantization of the Schrodinger equation, considered as the equation of
motion of a classical field ¢ (r), can be effected in a coherent fashion either with
commutators or with anticommutators. In both cases, the Heisenberg equation
for the quantum field ¥(r) associated with the classical field ¢(r),

¥(r) = i%[‘l’(r), H] (A .66)

has the form of a Schrodinger equation

. 2
h¥(r) = [— %A + V(r)‘\ Y(r). (A.67)

Note that the rules concerning the measurement of physical quantities are
unchanged. For example, two physical quantities relative to the quantized field
can be measured simultaneously only if the corresponding operators commute,
whether the theory is quantized with the commutation relations (A.61) or with
the anticommutation relations (A.65). However, it is necessary to mention here
that the fields themselves are not necessarily physical variables. Thus, in the
example of the quantization of the Schrodinger equation with anticommutators,
one finds that it is not possible to give physical meaning to the operator ¥(r)
(which has real and imaginary parts) as one can to an electric or magnetic field.
Only the quadratic Hermitian functions of ¥ represent physical quantities, to
which one then applies the measurement postulates. For example, g¥ " (r)¥(r)
is the operator associated with the charge density at point r. The fact that ¥(r)
is not a physical variable renders less troublesome certain of its properties—for
example, the fact that ¥(r) anticommutes with itself.

(ii) Depending on whether the quantization of the field rests on commutators
or anticommutators, the particles associated with the elementary excitations
of the quantized field are bosons or fermions (see for example Exercise 8).
When the field is relativistic, a link exists between the “spin” of the field and
the statistics of the particles associated with it. Very general considerations
(relativistic invariance, causality, positive energy) allow one to show that the
quantization of a relativistic field of integer spin can only occur in a satisfac-
tory way (that is, without violating the principles above) if it depends on
commutators. In contrast, if the spin is half-integer, it is necessary to use
anticommutators (*). Thus, the electromagnetic field, which is a vector field and
has spin 1, must be quantized with commutators, with the result that the
particles associated with it are bosons. In contrast, the Dirac field has spin 3,
and the particles associated with it (electrons and positrons) are fermions.
Complement Ay of Chapter V gives an idea of the connection which exists in
this case between the requirement for positive energy and the quantization by
anticommutators.

(*) This result is known as the “spin—statistics” theorem; it is due to W. Pauli, Phys.
Rev., 58, 716 (1940).
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B—THE STANDARD LAGRANGIAN OF
CLASSICAL ELECTRODYNAMICS

In this part we begin (§B.1) by giving the expression for the Lagrangian
most generally used in classical electrodynamics, and which we call “the
standard Lagrangian”. We will show then (§B.2) that the Maxwell-Lorentz
equations arise naturally as the Lagrange equations for one such
Lagrangian. Finally (§B.3) we analyze general properties of the standard
Lagrangian, namely, symmetry properties, gauge invariance, and redun-
dancy of the dynamical field variables.

1. The Expression for the Standard Lagrangian
a) THE STANDARD LAGRANGIAN IN REAL SPACE

The Lagrangian for the system made up of particles interacting with the
electromagnetic field is given as a function of the dynamical variables
relative to each of the subsystems. The dynamical variables of the particles
form a discrete set involving the components of the position r, and of the
velocity i, for the particles denoted by the index a. For the electromag-
netic field, it is the potentials and not the fields which appear as “good”
generalized coordinates in the Lagrangian formalism. This is not surpris-
ing, since the equations of motion for the potentials are second order in
time, as the Lagrange equations, while the Maxwell equations for the field
are first order. At each point r, four generalized coordinates are required,
these being the three components A (r) of the vector potential A(r) and
the scalar potential U(r) and the four corresponding velocities A ,(r) and
U(r), so that the field dynamical variables are

{A(r), U(r); A(r), U(r) } for all r. (B.1)

The dynamics of the system particles + electromagnetic field can be
derived from the standard Lagrangian

L=) %ma P2+ 8—20 jd%‘[Ez(r) — 2 BXr)] +
+ 2[4 8, - Alr) — ¢, U(r)]  (B.2)
the fields E and B being given as a function of the potentials A and U:

E(r) = — VU(®) — A(r) (B.3.2)
B(r) = V x A(r). (B.3.b)
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We will show below that this Lagrangian gives back the Maxwell-Lorentz
equations, which will justify a posteriori the choice (B. 2). This Lagrangian
has three terms: the Lagrangian for the particles, L, [first term of (B.2)];
the Lagrangian of the electromagnetic field, Ly [second term of (B.2)],
and the interaction Lagrangian L, [last term of (B.2)]:

=Lp + Lg + L (B.4.a)

= ZE (B.4.b)
Lp = ?" JdSr[Ez(r) ¢ BX(r)] (B.4.¢)
=2 [4: 1, - Alr) — ¢, U(m)]. (B.4.d)

By using the charge density p(r) and the current j(r) introduced in Chapter
I [see Equations (A.5.a) and (A.5.b)], one can then rewrite L, in the form

= Jd%[j(r)- A(r) — p(r) U(1)] (B.4.¢)

Finally, regrouping (B.4.c) and (B.4.¢) leads to the introduction of the
Lagrangian density %:

2 = L[EXr) ~ @ BO] + () - A — p(r) U(D) (B.5.2)
and the following form for the standard Lagrangian:
L=Yymi +jd3r3’(r) (B.5.b)

Note that the interaction term (B.4.e) 1s local; the current density (or
the charge density) at point r is multiplied by the vector (or scalar)
potential at the same point. In the field Lagrangian (B.4.c), spatial
derivatives of the potentials arise through E and B, which expresses a
coupling between the field variables from point to point. This coupling is
the origin of the propagation of the free field.

b) THE STANDARD LAGRANGIAN IN RECIPROCAL SPACE

We have seen in Chapter [ that the Maxwell equations are much
simpler in reciprocal space. In the same way, it is interesting to express the
standard Lagrangian as a function of the potentials in reciprocal space.
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The Parseval-Plancherel equality allows one to rewrite (B.5) in the form

L= gzm P+ ——Jd3k[| EK) P — 2| BK) ]+
+ Jd%[,‘*(k) < oA (k) — p*(k) % (k)] (B.6)

Equation (B.6) suggests choosing as dynamical variables the compo-
nents of the potentials in reciprocal space as well as their velocities.
However, it is necessary to take several precautions: going from real space
to reciprocal space corresponds to a change of variables which transforms
real quantities into complex quantities. The new variables then have twice
as many degrees of freedom as the old variables. But there are constraint
relationships tied to the fact that A(r) and U(r) are real:

(k) = o *(— k) (B.7.a)
UK) = U*(— k). (B.7.b)
If the potentials are known in a “reciprocal half space”, they are known
everywhere. One is then led to take as independent variables the potentials

and their complex conjugates in only half of reciprocal space. The equali-
ties

&E(— K) - E%(— k) = EX(K) - &(K) (B.8.a)
JH—=K) - (= k) =/(k) - o *k) (B.8.b)

which follow from (B.7), allow the rewriting of the Lagrangian (B.6) as a
function of the field variables in a half space. Denoting by fd’k the
integral extended over a half volume of the reciprocal space and by .# the
Lagrangian density in the reciprocal space, one gets

Lzzémai§+][d3k§ (B.9.2)
Z =g ll6M 1P — 2| Bk IP] +

+ [FE®) - A (k) + (k) -/ *(k) — p*(k) 2(Kk) — p(k) #*(K)] (B.9.b)
or, again expressing & and # as functions of &/ and %,

&= —of —ikw (B.10.a)
B =ik x o (B.10.b)
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Z = eo[) A ) + ikUK) 2 — ¢ |k x LK) 2] +
+ LK) - A (K) +/ (k) - oL k) — p*(K) %K) — p(k) Z*K)]. (B.11)

This new form, equivalent to the standard Lagrangian, presents certain
advantages. First of all, the Lagrangian density is strictly local in k. The
derivatives of &/ and % with respect to k do not appear (there is no
coupling between neighboring points as in real space). Additionally, in
(B.9), the contribution of the various modes of the field appear explicitly.
As we shall see below, it is then very easy to separate the contributions of
the nonrelativistic modes, or those of the long-wavelength modes, for
which an electric dipole approximation is possible.

2. The Derivation of the Classical Electrodynamic Equations from the
Standard Lagrangian

a) LAGRANGE’S EQUATION FOR PARTICLES

Since the particle variables are discrete, we apply Lagrange’s equation
(A.2) to the standard Lagrangian (B.2). One calculates first dL/d(r,), and
dL/a(t,);:

cL ¢ ¢
=—q—U —[r, - A(r,, ¢ B.12

p(r:z)i
which, using the vector identity

VA B)=(B-V)A +(A-V)B+Bx(VxA)+Ax(VxB)

(B.13)
becomes
L _ LU(r D+ q(b, - V) A(r,, ) +
(7('&)1' - 4, p(rz)i a q,\r, iNtas

In addition
‘L

a(i'a)i

= ma(i'a)i + g, Afr,, 1). (B.15)
The Lagrange equation describing the motion of particle a is gotten by
differentiating (B.15) with respect to time:

d cL . ¢ .
— =m - — A, + - V) A, B.16
d[ ("(l"a)‘. x (r:x)l + qat (’§t Az(ra’ [) qx(ra ) A;(rga [) ( )
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and by setting that expression equal to (B.14). One gets finally

. CA(r,, ¢ .
ma raz = qa[_ —((‘1[_)‘ - VU(ra‘/ [)_I + qz ra X (V X A (l'l, [)) (B17a)

m, ¥, = q,E(r,) +¢,r, x B(r) (B.17.b)

A TA

which is the Lorentz equation.

b) THE LAGRANGE EQUATION RELATIVE TO THE SCALAR POTENTIAL

For the equations relative to the field, one can use the Lagrangian
density in real space or in reciprocal space. Here we take the second
option, since it gives the quickest result. Starting with (B.11), one gets

oL

= b ik [of + ik} —p. (B.18)
Ry

In addition, since %* does not appear in &,
7

(”Z) *

=0. (B.19)

The Lagrange equation (A.52.b) is then written as

— ik o + ik%] = gﬁ (B.20)
0
which is finally
k-& =21 (B.21)
€o

and is nothing but one of Maxwell’s equations written in reciprocal space
[see (B.5.a) of Chapter I].

¢) THE LAGRANGE EQUATION RELATIVE TO THE VECTOR POTENTIAL
Starting with (B.11) for & and using the identity

(k x o) (k x o*) = [(k x o) x K]+ .o/* (B.22)

one can derive

= ¢, [k x (k x )], +/,. (B.23.a)
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In addition
2
P,Q? X

= ol + ik, U], (B.23.b)
The Lagrange equation relative to &/ * is then

bl d; + ik, U) = — g, 2[ik x (ik x )], +j,  (B.24)

which is finally. using (B.10),

ikx.ﬂ:%é‘—k !

. 2
¢ Eg ¢

/- (B.25)

One has here another of Maxwell’s equations in reciprocal space [see
(B.5.d) of Chapter I].

In conclusion, the application of the principle of least action to the
standard Lagrangian has given us on the one hand the Lorentz equation
for a particle in an electromagnetic field, and on the other the second pair
of Maxwell equations which relates the fields to their sources. [The first
pair of Maxwell equations results directly from Equations (B.10) relating
the fields € and # to the potentials & and #%.]

3. General Properties of the Standard Lagrangian
a) GLOBAL SYMMETRIES

The form of the Lagrangian is invariant under certain geometric
transtormations: translation and rotation with respect to the system of
axes to which the particles and the field are referred. The Lagrangian is
also invariant under a change of the time origin. From these invariance
properties it is possible to derive expressions for a certain number of
conserved quantities, namely, the momentum, the angular momentum,
and the total energy of the system field + particles. (This is done in
Complement B,;, on the form which the standard Lagrangian takes in the
Coulomb gauge.)

The standard Lagrangian (B.2) does not transform simply under a
Lorentz transformation. Indeed, it is clear that the standard Lagrangian
does not treat the particles in a relativistic way, the Lagrangian of the
particles, equal to ¥, m,i2/2, being purely Galilean. We are now going to
show that the Lagrangian (B.2) can be gotten in the classical low-velocity
limit (v/c < 1), starting from a relativistic Lagrangian, that is, one with a
relativistically invariant action.

We note initially that the Lagrangian density of the electromagnetic
field is a relativistic scalar field. Indeed, it is a function of the electromag-
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netic tensor field F** [see Chapter I, Equation (B.28)] of the following
form:

2
Py = — 80‘72 F,, F* (B.26)
uy

which is manifestly invariant under a Lorentz transformation. The contri-
bution to the action of the Lagrangian density of the free field is written

Sp = sz Jd%xR. (B.27)

Now, £, on one hand and the volume element dzd*r on the other are
relativistic invariants. It is clear then that the action Sy is a relativistic
invariant.

We will show now that the interaction Lagrangian between the particles
and the field contributes equally to the action in a covariant fashion. For
this it is sufficient to note that the infinitesimal variation of the action
relative to the interaction of particle @ with the field arises as the scalar
product of the four-vector dx/ with the four-potential 4,

ds, = L,dt = Y q,[dr, - A(r,, 1) — dt U(r,, )] (B.28)

ds, = — Y g, dxi 4,. (B.29)
ap
Finally, it suffices to transform the Lagrangian of the particles, Lp, to get
a relativistic Lagrangian. To this end, we replace L, by

x2
r
L = —Ymc* 1 —C—z. (B.30)

The infinitesimal variation of the action corresponding to (B.30) is then
written

i.2
dS=L¥'dr=—Ym @ 1 —2di=—~Ymcdr, (B.3])
2 C x

where
i.Z
dr, = dt \/1 —C—’Z (B.32)

is the proper time of the particle a. Since d7, and dS are relativistic
invariants, the Lagrangian (B.30) is also a relativistic Lagrangian. Addi-
tionally, expansion of (B.30) in powers of £2/c? gives. to within a constant
term — X m c?, the Lagrangian L, given in (B.4.b).
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In conclusion, it appears possible to introduce a fully relativistic
Lagrangian

-2
L= — ZmZ & 1 - ;—“2 + %jd%[Ez(r) - 2 BX(r)] +

+ 2 la. 1, - A — ¢, Ur)] (B.33)

which can serve as the basis for classical electrodynamics. However, if one
proceeds in this fashion, difficulties arise in quantization of the theory,
primarily as a result of the impossibility of constructing a relativistic
quantum theory for a fixed number of particles.

Remarks

(i) It turns out that the correct procedure for constructing a relativistic quan-
tum theory involves starting from a classical theory where the particles are
described, like radiation, as a relativistic field (Klein-Gordon field, Dirac field,
etc.) coupled to the Maxwell field. Then when such a theory is quantized, the
particles, indeterminate in number, appear as elementary excitations of the
quantum matter field and interact with the photons, which are the elementary
excitations of the quantized Maxwell field (see Complement A).

(ii) It is possible to justify the use of the standard nonrelativistic Lagrangian
(B.2), and, as a result, of the Hamiltonian in the Coulomb gauge which we will
derive below, by starting from relativistic quantum electrodynamics and exam-
ining the low-energy limit of this theory. One finds to the lowest order in v/¢
the dynamics described by (B.2). One also gets the interaction terms tied to the
spins of the particles (see Complement By,).

b) GAUGE INVARIANCE

The Maxwell-Lorentz theory of electrodynamics is manifestly invariant
under a change of gauge, since only the electric and magnetic fields appear
in the basic equations. Gauge invariance is less evident for the Lagrangian
theory, which uses the potentials as variables to describe the field. It is
thus appropriate to examine the consequences of a gauge change in the
Lagrangian formalism.

Following Equations (A.12) from Chapter I, a gauge change is defined
by

A'r, 1) = A(r, 1) + VF(r, 1) (B.34.a)

-

U'tr, 1) = U, 1) — (—‘7 F(r, 1) (B.34.b)
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F can be an explicit function of r and ¢, but can also depend on the field
variables, which are themselves functions of r and ¢.

In the transformation (B.34), the Lagrangian of the particles is evi-
dently not modified; nor is the Lagrangian of the field, which depends
only on the electric and magnetic fields. Only the interaction Lagrangian
is changed. The gauge change amounts to adding to the Lagrangian
density £ of the field given by (B.5.a) the quantity

o Rl

. F
,?lzj-wjup(—ﬂT (B.35)
which one can write in the form

hl ol
2, =V(jF)+€°—t(pF)-<v-j+%‘-;>F (B.36)
The first two terms add to the Lagrangian density a divergence and a time
derivative. According to (A.40) this transforms the Lagrangian into an
equivalent Lagrangian (see however the Remark below). As for the last
term of (B.36), it is zero as a result of charge conservation. It then appears

clear that charge conservation is a necessary condition for gauge invari-
ance.

Remarks

(i) There is not total equivalence between the changes in the Lagrangian and
the gauge transformations. For example, in (B.34), F can depend on A, U, A,
and U, which are themselves functions of r and 7. All transformations which
leave Maxwell’s equations and the fields E and B invariant are gauge transfor-
mations. On the other hand, it is only when F does not depend on the velocities
A and U that it also corresponds to a change in the Lagrangian, since otherwise
the accelerations A and U would appear in the Lagrangian. Conversely, the
changes in the Lagrangian density defined by (A .40) do not necessarily corre-
spond to a gauge transformation. By comparing (A.40) and (B.36), one sees
that for that it is necessary that a function F exist such that

f=jF (B.37.a)
fo = pF. (B.37.b)

Now it is not possible in general to satisfy both these conditions.

(ii) In the gauge field theories, gauge invariance plays a much more fundamen-
tal role. Starting with the fields representing particles, one requires that the
theory be invariant under a /ocal change of phase of the fields. To realize this
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invariance, it appears necessary to introduce a vector field (the electromagnetic
field) coupled to the field of the particles in such a way that the phase changes
in the matter field entail gauge transformations of the vector field (see Exercise
9). One introduces in this way a fundamental relationship between the change
of phase of the matter field and the gauge change of the electromagnetic field.

¢) REDUNDANCY OF THE DYNAMICAL VARIABLES

In the description of electrodynamics through the standard Lagrangian,
the field is described at each point r by the potentials A and U and the
corresponding velocities (B.1). Thus, the dynamical variables are eight in
number at each point in space. Now the approach to electrodynamics in
Chapter I, resting on the Maxwell-Lorentz equations, introduces six
degrees of freedom for each point {the three components of the electric
and magnetic fields E(r) and B(r)]. Besides this, writing the Maxwell
equations in reciprocal space allows one to show that the longitudinal
components & (k) and % (k) are fixed by algebraic equations [Equations
(B.5.a) and (B.5.b) from Chapter I]; the evolution of the four other
dynamical variables (the transverse electric and magnetic fields) is de-
scribed by differential equations which are first order in time [Equations
(B.49.a) and (B.49.b) of Chapter I]. It is thus evident that in describing the
electromagnetic field by the potentials &/ and % one has introduced an
overabundance of degrees of freedom. Thus constraint relations must exist
between the dynamical field variables.

We now examine how these constraints appear. An analysis of the
Lagrangian density .Z in (B.11) shows that % does not appear in this
Lagrangian density. This implies, on one hand, that the conjugate momen-
tum associated with the variable % is identically zero, and on the other
hand, that the Lagrange equation (B.20) associated with % relates % to
the other dynamical variables by an algebraic equation. This type of
problem has already been considered in §A.1.e. When the velocity associ-
ated with a generalized coordinate does not appear in the Lagrangian, this
coordinate can be eliminated by expressing it as a function of the other
dynamical variables, giving a reduced Lagrangian. Here such a step allows
the elimination of the scalar potential %, and one gets a Lagrangian where
only the three components of the vector potential ./ and their time
derivatives appear. One can further reduce the number of degrees of
freedom of the electromagnetic field through the choice of gauge. It
follows from equations (B.8.a) and (B.26) of Chapter I that a choice of
gauge amounts to fixing the longitudinal component of the vector poten-
tial o/, which is otherwise arbitrary. This then leads to a satisfactory
physical situation where the field has at each point four independent
physical variables which correspond to the two transverse orthogonal
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components of the vector potential 7,(k) and #/,.(K) and to their time
derivatives &7 (k) and (k).

Remarks

(i) (k) is taken in a reciprocal half space and satisfies

(k) = &+ A (k) (B.38)

where ¢ is one of the two (real) transverse vectors. In the other half space we
define

HA(—Kk)=¢- (- k) (B.39)

where ¢ is the same vector for k and —k.

(ii) Since the fields in reciprocal space are complex, one could imagine that the
component &, (k), for example, corresponds to two real degrees of freedom (the
real and imaginary parts). In fact, since

(- k) =€ A (= k) =¢- A*k) = Z*Kk) (B.40)

one has for the set of points k and —k two real degrees of freedom, i.e. one at
each point.

The step described above results in a reduced Lagrangian where the
field is described only by four dynamical variables, and the symmetry
between the four components of the four-potential in the standard La-
grangian is now destroyed. It is of course tempting to try to quantize the
theory without going through the reduced Lagrangian, keeping the four
components of the four-potential as independent variables. However, such
a procedure is impossible if one starts from the standard Lagrangian, since
the conjugate momentum 7T, associated with % is identically zero accord-
ing to (B.19). It is thus impossible to impose upon the operators associated
with % and T, the canonical commutation relations (A.61.b). The conser-
vation of symmetry between the four components of the four-potential is
then possible only through the use of another Lagrangian (see Chapter V).

The natural step to quantize the theory starting from the standard
Lagrangian consists then in eliminating % to get a reduced Lagrangian,
and then choosing a gauge by fixing & i~ The simplest possible choice
corresponds to the Coulomb gauge (see Chapter I, §A.3). One is then
naturally led to study electrodynamics in the Coulomb gauge. Other
choices of gauge corresponding to other values of o/ i can of course be
considered (examples of this are given in Chapter 1V).
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C—ELECTRODYNAMICS IN THE COULOMB GAUGE

In this final part, we will show how one eliminates the redundant
dynamical variables in the standard Lagrangian (§C.1). This will lead to
the Lagrangian in the Coulomb gauge, the properties of which will be
examined in §C.2. We will then pass to the Hamiltonian formalism (§C.3)
and to the canonical quantization of the theory (§C.4). Finally we will
discuss the important characteristics of this theory (§C.5).

1. Elimination of the Redundant Dynamical Variables from the
Standard Lagrangian

a) ELIMINATION OF THE SCALAR POTENTIAL

Following the route sketched in §B.3.c, we will use Lagrange’s equation
relative to % to express the scalar potential as a function of the other
dynamical variables and thus get a Lagrangian depending on a smaller
number of degrees of freedom.

Lagrange’s equation (B.20) allows one to write

, 1.,
U=z [UM, + 8%] (C.1)
where
A =% (€.2)
By replacing % with (C.1) in the standard Lagrangian (B.11), one gets a
Lagrangian depending on a reduced number of dynamical variables (the

components of the vector potential and the associated velocities) which we
still call L

1 . . . *
L= Z 5 m, l'f + & fd”([dl* . 'QIJ_ n fé kf; _ (,Z(k « !dl*) - (k x JZIL)]

Bkl %ot £ AF 2p*p_i % of 7 %
+ / - +// . - gokz l:(p ’%H - 'D&{H . (C3)

In the same way, one eliminates % from the expressions for all the
physical variables which depend on it. Thus, the electric field in reciprocal
space (B.10.a) is now written as

k

o (C.4)

§(K) = — A\ (k) ——p
‘0

It depends on the field variables (. ) and the positions of the particles
(which appear in p).
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Returning to the Lagrangian (C.3) and grouping the terms, one gets

* . .
L=3} % m, 2 — fdsk Zo kpz T & ]dek[‘Q{f e S A I

xX

+ J[d3k[,/* nly )]+ J[d3k{/* Ay + =
1 . .
— k—(p* o — ptszf*)]. (C.5)
b) THE CHOICE OF THE LONGITUDINAL COMPONENT OF THE
VECTOR POTENTIAL
The longitudinal component &, of &/ appears only in the density .,S,;”
arising in the last term of (C.5):

Ly =ty ¥y A —/%(P* ) = ped ). (C.6)

The Lagrange equation for &7, derived from (C.6) is written

p=—ikj, (C.7)

and is just the well-known equation for charge conservation (in reciprocal
space). Clearly, this is not an equation of motion for &), so that &/ can
take any value.

This last point is even clearer if the equation of charge conservation
(C.7) is used to express 7 as a function of p. One then finds that (C.6)
can be written

i

Py = g At + pslit = p* el — )]
_i d of ¥ * of C.8
=T q et - et (€.8)

which gives for the Lagrangian (C.5)

* . .
L=Y % m, 2 — ]{ dﬂk% + g, ]{ Skl f - od| — Ak f ol +
x 0

. d i
+ fd‘*k[/* o+ A+ T ]fd3kl%[p.szr/3* —p*]. (C.9)

Since two Lagrangians which differ only in a total time derivative of a
function of the coordinates are equivalent, it appears that the evolution of
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the system does not depend on the value of &/, which appears exclusively
in such a total derivative. 2/, is not a frue dynamical variable, since its
value can be arbitrarily chosen without changing the dynamics of the
system.

Remark

The possibility of choosing &, arbitrarily is evidently related to gauge invari-
ance. On changing the gauge, &/, does not change and ./, becomes [see
(B.8), Chapter I}

o) = o +ikF. (C.10)
On changing the gauge, only the last term of the Lagrangian (C.9) is changed,
and this is a total derivative with respect to time.

One can imagine various possible choices for the longitudinal compo-
nent of the vector potential. The simplest choice obviously is

Ay =0 (C.11)

which requires that V - A be zero in the entire real space and thus selects
the Coulomb gauge.

Starting from this point, unless otherwise stated we will work in the
Coulomb gauge, where the vector potential is purely transverse:

o =, . (C.12)

To simplify the notation, we will henceforth omit the index L .

2. The Lagrangian in the Coulomb Gauge

The Lagrangian in reciprocal space in the Coulomb gauge derives from
(C.9):

. 12 — .
L=Z%mzr§; ][d3k%5+][d3ki/’c (C.13.2)

4]
Goo= el — Ak Ad* )+ +f A% (C13.D)

The dynamical variables of the particles, r, and f,, appear not only in the
term X_m #2/2 but also in the charge density p and in the current g The
second term of (C.13.a) can be transformed into an integral over all space,
thanks to the reality condition p(k) = p*(—k). One then finds precisely
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the integral (B.32) from Chapter I, which is nothing but the Coulomb
energy of a system of charges:

PRLE e = Y+ T B g
N ou — “Cou 1l>547r£0|ra—r,,|

€Cou Deing the energy of the Coulomb field of particle a, defined by (B.36)
of Chapter L

The Lagrangian of the field and the interaction Lagrangian can also be
expressed as functions of the fields in real space. After transforming the
integrals on a reciprocal half space into integrals on a full space and
applying the Parseval-Plancherel equality, one gets

L= Z%md 12— Veou + Jd3r e (C.15.2)
$c=8—2"[A2—c'2(VxA)2] +itA. (C.15.b)

One should remember now that the vector potential A has only two
degrees of freedom at each point of space r. The constraint relations,
which have a simple expression in reciprocal space (see C.11), are more
cumbersome in real space, since they have a differential form:

V-A=0. (C.16)

As a result we will most often use the Lagrangian density in reciprocal
space. For example, in Exercise 4 Lagrange’s equations are derived di-
rectly from the Lagrangian (C.13).

Remark

None of the transformations which allow one to go from the standard
Lagrangian (B.2) to Lagrangians (C.13) or (C.15) in the Coulomb gauge ever
involve the Lagrangian of the particles ¥, m,t2/2. The same procedure could
be applied to the relativistic Lagrangian (B.33). It follows that the Lagrangian

/ i2 _
L= melc'z\l —%* Vc0u1+¥d3kfl’c (C.17)
p ¢ .

where % has the same form as in (C.13.b), is relativistic for the particles as
well as for the field. On the other hand, such a Lagrangian is not manifestly
covariant; that property is tied to the choice of gauge (C.16), which is not
invariant under Lorentz transformation.
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3. Hamiltonian Formalism
a) CONJUGATE PARTICLE MOMENTA

To find the conjugate momentum associated with the variable r,, one
uses (C.15) for the Lagrangian, where the current j is replaced by its
expression in terms of r, and ;!

j=Y g, 1,8(r—r, (). (C.18)

The only terms in the Lagrangian depending on the particle velocities are
1. .
szarf +Y g, 1, Alr).

It follows that the momentum associated with the discrete variable (r,), is

(pa)i = = ma(i‘a)i + qa Ai(ra) - (C . 19)

8(i-az)i

The conjugate momentum associated with r, is different from the mechan-
ical momentum m i, We shall return to this point.

Remark

One can also calculate the conjugate momentum starting with the relativistic
Lagrangian (C.17). One gets

m, I,

P. :——:
=%
¢

which agrees well with (C.19) in the limit v/c < 1.

+ 4, Alr) (C.20)

b) CONJUGATE MOMENTA FOR THE FiELD VARIABLES

To calculate the conjugate momenta associated with the field variables,
one uses the Lagrangian (C.13). At each point k, the field has two
independent generalized coordinates &7, and &7,. The definition of the
conjugate momentum in reciprocal space (A.53) leads to

(k) = £ A (K). (C.21)

The complex vector T whose two components are 7T, and T :

T=T,e+ T, ¢ (C.22)
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is the momentum conjugate with 2/ and can then be written using (C.21)
as

(k) = ¢, .o/ (K). (C.23)

Remarks

(1) Rigorously, we have calculated 7T(k) only in a half space, namely the one
corresponding to the integration domain of (C.13.a). One can define 7T (k) for
all k by extending the equality (C.23) to all space. The fact that A is real
requires then that

TT(— k) = 7T*(k) (C.29)

or equivalently, taking the derivative of (B.40) with respect to time and using
(C.23),

(- k) = TUHK). (C.25)

(i) The conjugate momentum in real space is gotten by Fourier transformation
of (C.23) defined over all space [see (A.58)]. One then gets

() = &, A(r). (C.26)

Note that this result could also be gotten directly by differentiating the
Lagrangian density (C.15.b) with respect to A. However, such a step is not
rigorously correct, since the three components of A are related by the constraint
relation (C.16) and cannot be varied independently.

¢) THE HAMILTONIAN IN THE COULOMB GAUGE

The procedure of §8A.2.d and A.2.g applied to the Lagrangian (C.13)
leads to the following Hamiltonian:

H=)Yp, I, + J[d%[n'&i* FT*e o] L. (C.27)
Using (C.19) and (C.23) to eliminate e velocities, one gets

— 1 2
H = Zz:z_m; [pz - qz A(ra):] + VCoul +

€o

%,
+ e, }d“k[n—z—n— 4k .d]. (C.28)

It is also possible to express the Hamiltonian as a function of the fields in
real space:

1 I I1\?
H = Zﬁ [p’ T 4x A(rz)]z + VCoul + ?O J‘dz}[<5—> T ('Z(V X A)Z-,
x X 4]

(C.29)
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Using (C.19) and (C.26), the Hamiltonian in the Coulomb gauge appears
as the sum of the kinetic energy of the particles, their Coulomb energy,
and the energy of the transverse fields.

Remark

Using (C.27) and the relativistic expression (C.20) for the conjugate momentum
p,, one gets a Hamiltonian

-~ 27102
. — 4, A()] ] N

H=>%m, (’2{1 + L I 2

o 3 Imy? 2 2
t Veou + 5 dnl—=) +¢ (Vx AP} (C.30)
o i

whose nonrelativistic limit is (C.29).

d) THE PHYSICAL VARIABLES

In this subsection, various physical variables related to the particles and
to the field are expressed as functions of the variables and their conjugate

momenta.
The velocities of the particles derive easily from (C.19):

P, = mi [P, — 4. A()]. (C.31)

Expressing 2/ as a function of the conjugate momentum 7 in (C.4), we
find

EK) = &,(K) + &, (K (C.32.a)
ik

&, (k) = —giopk—2 (C.32.b)

&,(k) = — gi (k). (C.32.¢)
4]

In real space this same expression becomes, following Fourier transforma
tion,

E(r) = E, () + E,(1) (C.33.a)
1 r—r,
E ) = 4n50§‘1@ TEERL (C.33.b)

E (r)= —giol'l(r). (C.33.0)
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For the magnetic field, the equations do not depend on the conjugate
momenta and it is sufficient to give (B.10.b) and (B.3.b):

A =1k x o (C.34.a)
B=V xA. (C.34.b)

Finally, one can express the momentum P and the angular momentum
J of the global system particles + radiation [defined in Chapter I by (A.8)
and (A.9)] as functions of the variables and their conjugate momenta. One
finds

P=Yp, — i}d*‘k[n* ¥ (k x o) — T x (kx %] (C.35.2)

X

P=Zp1—Jd3r[H x (V x A)] (C.35.b)

J:Zraxpz—Jd3rr><[H><(V><A)]. (C.36)

Note also that the expressions (C.28), (C.29), (C.35), and (C.36) gotten
above for H, P, and J can be derived directly from the symmetry
properties of the Lagrangian in the Coulomb gauge (see Complement By;).

4. Canonical Quantization in the Coulomb Gauge
a) FUNDAMENTAL COMMUTATION RELATIONS

The general principles of canonical quantization have been examined in
§8A.1.g and A.2.g for the cases of a discrete number and a continuum of
degrees of freedom respectively. It suffices then to apply these results
to the particular case of the variables and conjugate momenta introduced
in the subsection above.

For the particles, the fundamental quantization relations use the opera-
tors associated with (r,); and (pg)

[(ra)i’ (p[i)j] = ik 5,‘,‘ 5041 . (C37)

For the electromagnetic field, we have shown that at every point k in a
reciprocal half space there are two independent complex dynamical vari-
ables <7,(k) and #,.(k), associated with which are two conjugate momenta
7 (k) and T, (k). The commutation relations between the operators associ-
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ated with these variables derive from (A.61) and are written

[(K), T, (k)] =0 (C.38.2)
[(k), T} (K)] = ifi 5, 5k — k) (C.38.b)

the other commutators being zero.

Remark

In (C.38), k and k' belong to the same half space. It is possible to generalize
(C.38) to all reciprocal space using the relationships between operators given by

A(— k) = o, (k) (C.39.2)
(- k) = T (k) (C.39.b)

which follow from (B.40) and (C.25) between classical quantities. Equations
(C.38) then become

[A(K). T (K)] = ik 3, 6(k + K (C.40.2)
[Zk)., T (K)] = ifi 6, ok — K) (C.40.b)

all other commutators being zero.

To prove (C.40.2) it suffices to note that if k and k' are in the same
reciprocal half space, k + k' can never be zero, so that (C.40.a) reduces to
(C.38.a). On the other hand, if k and k' are not in the same half space, it
suffices, taking account of (C.39.b), to replace 7T (k) by 7[:( -k") and to use
(C.38.b) (which then applies since k and —k’ are in the same half space) to
prove (C.40.a). A similar procedure serves to prove (C.40.b).

b) THE IMPORTANCE OF TRANSVERSALITY IN THE CASE OF THE
ELECTROMAGNETIC FIELD

The commutation relations (C.38) and (C.40) arise as a natural conse-
quence of the steps leading to quantization. It is necessary to stress the
fact that one of the most important stages in this procedure has been to
isolate the truly independent dynamical field variables. In particular, the
fact that the vector potential is transverse (zero divergence in real space)
implies that the three components 4,(r) (i = x, y, z) are not independent.
This constraint also appears when the commutation relation between
A,(r) and II,(r') is considered. We will see indeed that

[Ar), O(x)] # 1k 0;0(r — 1) (C.41)

So one must not crudely apply the commutation relations (A.47) when the
independent dynamical field variables have not been clearly identified.
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To determine the commutator between A,(r) and II,(r), one begins
with the commutator between the corresponding quantities in reciprocal
space. The Cartesian component 7 (k) as a function of the transverse
components is

ALk) = ¢ Z(k) + & ZA(K) (C.42.2)
with
g, =€, "¢, (C.42.b)

13 1

The Cartesian component 7T (k') is defined by equations analogous to
(C.42). Using (C.40.b) one gets

LK), T, (k)] = ih(e; e, + € ) 0k — K). (C.43)

Since {&, ¢, k) forms a basis for the space, (C.43) can be replaced by

[/ (k), 7T/ (K)] = ih[&u —~ ]Zzﬂ Sk — k). (C.44)

We have seen above that (C.40.b) is true for all values of k and of k’. The
same result holds for (C.44). Multiplying both sides of (C.44) by
e krek v /(24)? and integrating twice over all reciprocal space, one gets
by Fourier transformation, on the left, [4,(r), Hj+ (r)] and on the right the
function 8,.j. (r — r’) introduced in Chapter I [see (B.17) in Chapter I and
Complement A]. Finally, using the fact that II (r) is Hermitian one finds

[4:n), D (r)] = ihd;(r — ). (C.45)

J

¢) CREATION AND ANNIHILATION OPERATORS

In Chapter I, the classical normal variables a(k) were introduced as
linear combinations of &7 (k) and of &, (k) [see (C.30) of Chapter I].
Using (C.32.c), one can express &, (k) as a function of the conjugate
momentum 7T(k) and then get the following expresston for a (k) = ¢ - a(k):

o (k) = /f};’w [m@(k) n “;‘ TIE(k)] (C. 46)
< 0

As has already been seen in Chapter I, the interest in the normal variables
is that they evolve independently in the absence of sources. Additionally,
one does not have a relationship between a(—k) and a*(k) analogous to
the constraint relations (B.7.a) and (C.24) (which arise because A and II
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are real), with the result that the normal variables at each point k are
independent of the normal variables at point —k.

After quantization (k) and 7T (k) become operators. The same linear
combination of these operators, analogous to (C.46), allows one to define
the operators a (k), which are the quantum analogues of the normal
variables a (k) (the operators a being associated with a}):

a,k) = /2% [wﬂs(k) + gi ns(k)} (C.47.a)
4]

a* (k) = /2% [w.gz;(k) - EL n;(k)] (C.47.b)
4]

To find the commutation relations for the operators a (k) and a; (k), it is
necessary to use their definition (C.47) and the commutation relations
(C.40) (which remain valid whatever k and k" may be). Such a procedure
gives

[a,(k), a.(k)] = 0 (C.48.2)
[a (k), a (k)] =0 (C.48.b)
[a,k), a} (K)] = 3, d(k — K). (C.48.¢)

These relations are identical to those (D.4) postulated in Chapter 1. They
show that the operators a (k) and a; (k) are the annihilation and creation
operators for the harmonic oscillator associated with the mode ke. We will
see in Chapter III that a,(k) and a/ (k) destroy and create a photon ke.

Finally, it is possible to give all the observables of the field as a
function of the operators a and a* and to prove that one then gets the
same expressions as those given in Chapter I (§C.4).

5. Conclusion: Some Important Characteristics of Electrodynamics in the
Coulomb Gauge

To conclude this section devoted to electrodynamics in the Coulomb
gauge we now review a few important characteristics of the theory which
has been elaborated above.

a) THE DYNAMICAL VARIABLES ARE INDEPENDENT

A great advantage of the theory developed above is that one has
eliminated the redundant variables of the field to get a simple situation
where the number of dynamical variables is the minimum necessary to
describe the field dynamics. As a result, the field can be quantized with a
great economy in the formalism.
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b) THE ELECTRIC FIELD IS SPLIT INTO A COULOMB FIELD AND A
TRANSVERSE FIELD

Equations (C.4) and (C.33) clearly show that the electric field appears
as the sum of two terms; the first, depending on the particle coordinates, is
the Coulomb field, and the other is the transverse field. Similarly, in the
expressions for other physical quantities, such as the Hamiltonian,
the terms arising from the Coulomb field are separated from those from
the transverse field. This separation seems at first glance to raise a
problem, since the Coulomb interaction is instantaneous (it depends only
on the positions of particles a and 8 at ). It is clear, however, that the
real interaction between particles o and 8 takes place with a retardation
associated with the propagation of the field with velocity ¢. In fact, the
retarded character of the electromagnetic interactions results from an
exact compensation between two instantaneous parts coming from the
Coulomb field and the transverse field respectively. This point has already
been discussed in Chapter 1 (see §B.6 and Exercise 3). Globally the
retarded character of the interactions is retained, but it is not obvious.

On the other hand, this separation has an immense advantage for
atomic and molecular physics in easily isolating the Coulomb interaction.
For particles moving with low velocities (v/c < 1), this is an excellent
approximation to the interaction between particles and allows, in particu-
lar, a simple treatment of bound states. The terms corresponding to the
transverse field then appear as corrections, in general of the order v2/c?
with respect to the Coulomb interaction, and describing the effects of the
retardation or magnetism. This separation is thus truly advantageous for
physics at low energies.

¢) THE FORMALISM IS NOT MANIFESTLY COVARIANT

In a manifestly covariant formalism the three components of the vector
potential and the scalar potential form a four-vector. By eliminating U
from the Lagrangian and by taking A = 0 we have dgliberately aban-
doned such a point of view. However, it is necessary %o be aware that
abandonment of the manifest covariance does not mean loss of relativistic
invariance. The predictions for the electromagnetic field are in agreement
with the theory of relativity even within the framework of the Coulomb
gauge.

There are however situations where it is necessary to retain covariance
in the expressions, for example, to unambiguously eliminate the infinities
in renormalization. Under those conditions U must be retained. However,
since the momentum conjugate with U is zero in the standard Lagrangian,
it is necessary to modify the standard Lagrangian to preserve the symme-
try between U and A (see Chapter V). Quantization of radiation is then
carried out in a space where the field has more degrees of freedom than
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are physically necessary. This leads to the imposition of constraint condi-
tions on the possible states in this overly large space. Furthermore, if one
wants to treat the particles properly, it is necessary to think of them as
excitations of a relativistic matter field (Dirac field, Klein—-Gordon field,
etc.).

Finally, for physical problems at low energies such as are discussed in
this book, such an approach would introduce several formal complications
without improving our understanding of the physical processes.

d) THE INTERACTION OF THE PARTICLES WITH RELATIVISTIC MODES Is
NoT CORRECTLY DESCRIBED

In the Coulomb-gauge Lagrangian (C.13), the particles can interact
with arbitrarily high-frequency modes. Analogously, the Coulomb interac-
tion is assumed exact at arbitrarily small distances. Now it is well known
that in relativistic quantum theory the interaction with modes with fre-
quency » such that hv > mc? involves effects (creation of electron—
positron pairs, vacuum polarization, relativistic recoil) which are not
included in the theory developed here. These same effects (vacuum polar-
ization) introduce a modification of the Coulomb interaction for smail
distances of the order h/mc.

To recapitulate, resonant interaction with the optical or rf modes of the
field (hv < mc?) is correctly described by the theory described in this
chapter. For processes involving virtual emission or absorption of photons
by an isolated atom, only the contribution of low-frequency modes is
correctly evaluated. In contrast, the Lagrangian (C.13) cannot satisfacto-
rily treat the effects associated with high-frequency modes.

Remark

Rather than retain the interaction terms with the high-frequency modes in
(C.13), which would lead to erroneous results, it is possible to decouple the
particles from these modes by making a “cutoff” in order to annul these
interactions. We thus give up all couplings with high-frequency modes. To
account correctly for these it would be necessary to develop a more elaborate
theory, relativistic quantum electrodynamics, which is beyond the scope of this
book.

To cut off the interaction with the high-frequency modes, we multiply the
current ;7 and the charge density p of the standard Lagrangian (B.11) by a
function g(k) whose behavior is shown in Figure 2. Thus through the introduc-
tion of the function g(k), the integrals of the interaction Lagrangian over k are
limited to values less than k., which is chosen of the order of mc/k. The
particles then cannot interact with relativistic modes. It is also possible to
visualize the effect of this cutoff in real space; the Fourier transform of
p(k)g(k), for example, arises as a function whose contours are diluted on a
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glk) 4

0 k k

Figure 2. The cutoff function g(k) introduced into the standard Lagrangian to
climinate the interaction with high-frequency modes.

distance of the order of 1/k.. A point particle then appears with this cutoff
with a charge distributed over dimensions of the order of 1/k . This is not
physically real, but is only an expedient for disregarding the effects taking place
at distances smaller than 1 /k_.

We now look at how the derivation leading from the standard Lagrangian to
the Lagrangian in the Coulomb gauge is modified by the introduction of the
cutoff. To eliminate % it is necessary to write Lagrange’s equation relative to
this variable. Starting with the Lagrangian following from (B.11),

L:;%mxi'f + fdﬁk@? (C.49.2)
F =gl + kU2~ c? |k x o |}] +
F(F o 4 A — pt AU — pU*) gk). (C.49.b)
one deduces

— ik - [ + k2] = 1 pg(h) (C.50)
0

which differs from (B.20) by a factor g(k). Eliminating % and going to the
Coulomb gauge, one gets finally

2 . .
L= Z%m1 - fdJk—L:k‘z [9)]> + &, fd‘k[g* cod g PR A o)
+ fd’k[/’* ol + jr oA ¥ gk). (C.51)

Thus we find that in the term describing the interaction with the transverse
field [last term of (C.51)] the cutoff function g(k) decouples the particles from
the high-frequency transverse modes. The function g(k) arises also in the
Coulomb interaction terms [second term of (C.51)], which can be written

I7(‘0u1 = Z Eg‘oul + Z 171/1 (C52a)

x>f
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qZ 4 qZ
et d _ X 2 ~ z
B = 771 . .[) [g()]* dk T k, (C.52.b)
% 4s 4 [1 - Ok, Ix, — 1, D] (C.52.¢)

”‘:4n80|r1—rﬂ|

where O(x) is a function which goes to zero when x goes to infinity. The
results in (C.52) conform to the picture which we give for the effect of
the cutoff in real space. For distances large with respect to 1/k, = k/mc, the
interaction between charged particles is the Coulomb interaction with excellent
precision. This clearly justifies the use of the Coulomb interaction in the
treatment of a system like the hydrogen atom, where the Bohr radius is large
with respect to the Compton wavelength. The contribution of the low-frequency
modes to the Coulomb self-energy is given by (C.52.b). Its order of magnitude
is that of the Coulomb energy of a charged sphere with charge ¢, and radius
h/me.

GENERAL REFERENCES AND USEFUL READING

— For the Lagrangian description of systems with a finite number of
degrees of freedom see Landau and Lifschitz (Vol. I), Goldstein.

— For the Lagrangian description of continuous systems and canonical
field quantization see Goldstein (Chapter XI), Schiff (Chapter XIII),
Messiah (Chapter XXI, §I), Roman (Chapter I).

— For the Lagrangian description of the electromagnetic field see
Sommerfeld (§32), Landau and Lifschitz (Vol. II, Chapter 1V), Schiff
(Chapter XIV), Power (Chapter 6), Kroll, Healy (Chapter 3).

— More advanced texts treating the relativistic fields and using covariant
Lagrangians are cited in Chapter V.
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COMPLEMENT A

FUNCTIONAL DERIVATIVE.
INTRODUCTION AND A FEW APPLICATIONS

The functional derivative generalizes the partial derivative for functions
depending on a continuous infinity of variables (§§A ;.1 and A[;.2). This
tool is most useful when a physical law can be derived from a variational
principle. For example, the principle of least action is expressed mathe-
matically by the vanishing of the functional derivatives of the action. The
explicit evaluation of these functional derivatives gives back the Lagrange
equations (§A;.3). Another source of interest in the functional derivative
is that it allows one to write the equations of motion of a continuous
system (such as a field) in a form analogous to that of a discrete system in
the Lagrangian formalism (§A;.4) as well as in the Hamiltonian one

(8A [1.3).

1. From a Discrete to a Continuous System. The Limit of
Partial Derivatives

Consider a chain of N point particles with mass m separated by a
distance a from one another along the x-axis and moving in the same
direction y. Let v, be the velocity of the nth particle. Its kinetic energy is

T, = 5 mv} (1)

and the total kinetic energy is equal to

N
E, = :Zl T, )

E, appears then as a function of N real variables v, (the velocities of the
particles). We now calculate the differential of E, with respsct to the v,. It
can be given in various forms:

F N dTn

3
1 O, n=1 dvn

dE, =

c

de,

1=
93]
o
=
Il

€)

1 m, dv, .

I
1=

n

Let us examine what occurs when the number of particles increases but
their mass and separation decreases in such a fashion that the mass per
unit length g = m/a and the length / = Na remains constant. Schemati-
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cally, one goes from a chain to a string moving in the y-direction. In going
to the continuous limit, Equations (2) and (1) become respectively

!
E = J dx T(x) 4

4]
T(x) = %uvz(x) . (5)

The discrete index n has been replaced by a continuous index x
characterizing the position of the length element under consideration. The
kinetic energy T, is replaced by the kinetic energy density 7(x), and the
total kinetic energy becomes a function of a continuous set of variables
{v(x)}.

We will now examine what happens to Equation (3), giving the differ-
ential of E_, in the continuous limit. For the independent variations dv, of
the N velocities (Figure 1a) we now substitute a function dv(x) describ-
ing the small variations of v which can take on arbitrary values at the
different points x (Figure 1b).

AL Ao

de, .
bideirig,

L

$ gdr,l

| 1 1

J n n 0 A\ ! X

o+

Figure la Figure 1b

The generalization of (3) is then

X Y FdT()
ok, = JO dx Fo00) ov(x) = J dx Ve o —— = 5r(x)

I (6)
- j dx po(x) ov(x) .

0

The notation #E,/ dv(x) represents the functional derivative of E_ with
respect to v(x). This functional derivative describes how E, varies when v
varies by the amount §v(x) on the interval [x, x + dx]. More precisely,
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@E./ dv(x) is the coefficient of proportionality between the increase SE,
and the cause §v(x)dx of this increase. Such a functional derivative,
which generalizes the entire set of partial derivatives dF,/dv, when n
becomes infinitly large, is thus a function of x which is equal to pv(x) in
this particular example. Note, finally, that in (6), d7(x)/dv(x) is a
derivative in the usual sense, since from (5) the kinetic energy density
T(x) appears as a function of the real variable v(x).

2. Functional Derivative

The ideas above can be generalized in an elementary way. We will
consider an application which associates a real number ¢(u) with every
function u(x) of the real variable x. Such an application ¢ is called a
functional. 1t is called differentiable if, for all infinitesimal variations
Su(x) of u(x), the corresponding variation 6¢ of ¢ can be expressed as a
linear functional of du(x) in the form

5¢ = plu + du) — P(u)
(7
= de D(x) du(x) + O(du)* .

If one assumes that the variations §u(x) at the different points can be
chosen independently, the functional derivative of ¢ with respect to u(x)
is

¢ _ D(x). (8)

fu(x)

Intuitively, ¢/ du(x) is the coefficient of proportionality between the
increase 8¢ and the variation §u(x)dx which gives rise to it.

Remarks

(1) The definition of the functional derivative through Equation (8) assumes
that the space of the functions u(x) is sufficiently large that one can vary u(x)
independently at the different points. A precise analogue exists in the definition
of partial derivatives of a function of several variables ¢ (x,, x,,..., x, ), where
the variations dx,;,dx,,...,dx, must be independent.

(i)) The ideas above can be casily generalized to functions u of several real
variables x, y, z and to the case where u is a vector in R, or C,. In the latter
case, D(x) is a vector of the same dimension.

3. Functional Derivative of the Action and the Lagrange Equations

The functional derivative is particularly useful when a physical law is
described in terms of a variational principle—in particular, in the frame-
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work of the Lagrangian formulation of mechanics, where the true motion
appears as an extremum of the action

S = J de L{x(0), x,(1), t). (9)

(We adopt here the same notation as in §A.1). The functional § here
depends on N independent functions x(¢). In effect, giving the x (1),
with ¢ varying from f, to t,, automatically determines the values of the
velocities X () on the same domain of variation of ¢. The principle of
least actlon states that the increase 8S of S, which can be written
following §A ;.2 above as

S lzd—"fs ) 10
S—j; J zﬁj([)a.xj(x) (10)

must be zero no matter how the variations 8x () about the true path are
chosen. This is simply stated by the equation

N

We will show that this equation is just Lagrange’s equation relative to
x ;. To this end one restates 8S as a function of L. Using (9) one finds

X N TeL oL .
oS = Jtl dlj;1 ['0—55,‘(} + T‘SOXJ:] (12)

The variations 8x, and 8x; = d(8x,)/dt are not independent in (12). To
reexpress the 8x, as funcuons of 8x ,» one integrates the second term in
the brackets by parts This yields
t 2
} . (13)
1y

) N ToL d oL oL .
()S—Jtl df]zl[(,]—\'j—a }5 (f)+[

In the framework of the least-action principle, the endpoints of the
trajectory are assumed fixed. It follows that one must be restricted to
variations such that 8x (1,) = 8x,(¢,) = 0. The second term of (13) then
vanishes. Comparison of (10) and (11) then yields

s cL d 7L
Cx (1) B {W dr éx } 0. (14)

The condition (11) on the functional derivative of the action thus gives
back Lagrange’s equations for mechanics.
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4. Functional Derivative of the Lagrangian for a Continuous System

In the case of a dynamical system depending on a continuous set of
degrees of freedom, the Lagrangian itself appears as a functional. More
precisely, using the notation of §A.2, L appears as a functional of A4 A0
and A ,;(r) which can be written

Jd3r$(A A (15)

Note that even if the Lagrangian density depends on spatial derivatives
d;A, these must not be considered as independent variables of 4; in the
funcnonal L. Actually, giving A (r) automatically specifies d,4 (r) In
contrast, at a given instant, A4 J(r t) and A ,(r, 1) are mdependent vari-
ables. We will evaluate the differential of L,

5L=Jd3r2[g;j5z‘1()+ SAr) + (‘i) (F‘,-A,-(r))].(m)

To reexpress 8( (r)) as a function of 84, integrate the last term in
the brackets by parts and use the fact that the 4 ,(r) correspond, in
practice, to fields which vanish at infinity. We get

} Y

_ . [ ¥
o= Jd ’ ;{ [GAJ. 6i<5(5if’j)>}

By using the functional derivatives of L one can also write the differential
of L in the form

5L=Jd3 Z[» 540 + L ()A(r)J (18)
D) A (r)
Equating (17) and (18) shows that
L 0¥ o
ZYC Ry i) ai< 0(01.A,.)> (19
oL o

— = —. (20)
FA(r) 04,

J

We will now derive the Lagrange equations for a continuous system,
starting from the principle of least action. The action

S = szz L(r) = sztjd3r$(Aj(r, 0, Afr, 0, QA D) (21
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is a functional of A4,(r, ). In effect, giving A (r, 1) between 1, and 1,
automatically fixes the values of A ;(r, 1) on the same time interval. Even
though the Lagrangian L defined at each instant by (15) is a functional of
A, and A the action S defined in (21) is a functional of 4, only. Its
dlﬁ"erentlal SS is equal to

ts oS
oS = dr | &*r 0A[r, t 22
J, | J A S D (22)
and the principle of least action is expressed by
éS
A 23

To find these derivatives, substitute in 8S the functional derivatives of the
Lagrangian

5S=j2dt5L=J2dtJd3 2[5;’;)5/1(“ n: 5f3j(r)}
0o A r)

t

24

and restate 8A = d(84,)/dt as a function of 84, by integrating the last
term by parts w1th respect to time. Using the fact that the principle of
least action is used with zero variations of 84, at times ¢, and 1,, one
finds

’ CL d (L
oS = J;l dr Jd%; [sz(r) P = ( )] SA(r) . (25)

The differential of the action being zero along a true trajectory, one gets
the Lagrange equations

oS L d e
AL D) T A0 1 g

=0. (26)

Using functional derivatives thus leads to equations formally identical
to those gotten in the discrete case (14). To get the Lagrange equations
using the Lagrangian density (A.39) it is necessary to replace 3L/ d4 (r)
and #L/ 84 ;(r) by their expressions (19) and (20). It is however advanta—
geous w1th1n the framework of formal calculations to keep the functional
derivative of the Lagrangian, since the equations (and the proofs) are then
very similar to those developed in the discrete case. The following para-
graph shows how this method is used with the Hamiltonian.
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5. Functional Derivative of the Hamiltonian for a Continuous System

In the case where the Lagrangian depends on a discrete set of variables,
the momentum associated with the variable x,, is the partial derivative of
the Lagrangian with respect to x,, [cf. (A.5)]). The natural extension of this
to the case of a continuum of variables is

(L
‘4 j(r)

(1) = 27)

Note that in the example of §A ;.1 such a definition leads to a momentum
equal to pv(x), which is just the limiting value of the momentum per unit
length, a ', of the discrete system when a tends to zero. Note also
that this definition is identical to (A.41) as a result of (20).

The Hamiltonian is introduced by an expression identical to that of the
discrete case,

H:F%ZQM%M—L. (28)

This expression can be transformed [see (A.45.a) and (A.45.b)] in order to
introduce a Hamiltonian density 5. It is easy now to directly derive
Hamilton’s dynamical equations with the form (28) of the Hamiltonian.
To this end, one finds the differential of H, with H considered as a
function of 4 (r) and II (r). On one hand we have

ot = [er g oo + fgonm| e

and on the other hand, using (28),

3H = f &y [n,-(r) BAR) + Ay ST (x)

— {L 7L
T—éA-r ——_——5/4»1' . 30
The definition (27) for II (r) implies that the linear terms in b‘A of (30)
vanish. In addition, by v1rtue of (26) and (27), one can replace 6‘L/ dA(r)
by II, ;(r). Comparing the forms (29) and (30) of the differential §H, one
finds then

¢H

mm:-lﬂ) (31.a)
fij(r) _ CH

IR (31.b)
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These equations can be rewritten using the Hamiltonian density #
[just as Lagrange’s equation (26) can be rewritten with the aid of the
Lagrangian density thanks to (19) and (20)]. By proceeding in that
fashion, one gets Equations (A.46.a) and (A.46.b). Here again, the use of
functional derivatives of H allows one to write the Hamilton-Jacobi
equations of a continuous system in a form analogous to that of the
discrete case.
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COMPLEMENT B,

SYMMETRIES OF THE LAGRANGIAN IN THE COULOMB
GAUGE AND THE CONSTANTS OF THE MOTION

In this complement we will show that it is possible to derive from the
Lagrangian in the Coulomb gauge the expression for the conserved
quantities relative to the system particles + field. To find the expression
for these constants of the motion, we will calculate the action along the
actual path and relate the infinitesimal variations of the action to
the Hamiltonian and to the momentum. We will then use the invariance of
the Lagrangian (and thus that of the action) under certain transformations
(time translation, spatial translation, spatial rotation) to find the constants
of the motion (energy, total momentum, total angular momentum).

1. The Variation of the Action between Two Infinitesimally Close
Real Motions

The principle of least action requires that the integral of the Lagrangian
between two times f;, and ¢, be an extremum when x(t) corresponds to
the real evolution of the generalized coordinate x between ¢; and 1,, the
values at the endpoints x(¢;) and x(z,) being initially fixed. From such a
point of view, one evaluates the action S on many virtual paths in the
(x, t) plane and seeks that which minimizes S. A second possibility is to
consider all the possible real paths starting from x(z,) = x, and to study
the variation S’ — § of the action when one varies the other extremity
from (x,, t,) to (x5, t}) (Figure 1). It is this procedure which we will
follow here.

We will calculate §* — S:

S’—S=J2b(x’,5<’)dt—sz(x,5c)dt (1

ty

S-S = f Z [Lx, %) — Lx, )] dr + f L, X)dr. )

t2

Consider two infinitesimally close paths, and take

dS=5" -5 (3.a)
de, = t; — t, (3.b)
dx, = x5, — x, = xX'(t, + dt;) — x(1,) (3.0

ox(1)

¥(t) — x(1). (3.d)
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> !

Figure 1. Two real motions of the system, both starting from (x,, #;) and ending
respectively at (x,, #,) and (x5, #3). The difference §' — S is the vatiation of the
action from one path to the other.

Up to second-order terms, the last integral of (2) is
L(x(1), x(1)) dt; = [(2) dt; . “)

The first integral of (2) can be transformed using Equation (13) of
Complement A [, with the result that

ds = f dz[‘;—L _4 i} 5x(1) + [i 5x}2 LI d,. )
ty X

ox o dr ox ¢ y

Since the path x(#) corresponds to an actual motion, the Lagrange
equations are satisfied and the first term of (5) is identically zero, so that
dS can be simply given in the form

dS = p(t,) ox(1y) + L(2)di, . (6)
We have used the definition (A.5) of the momentum and the fact that

8x(t,;) = 0. Finally, we will relate 6x(z,) to dx,. Taking (3.d) and (3.¢)
into account, we have

0x(ty)

Il

xX'(ty) — x(1y)
X'(t, + diy) — x(1,) dr; — x(t,) (7
~ dx, — x(t,)ds, .

1

Finally, combining (6) and (7), we get

dS = p(1,) dx, — [p([z) »i’(tz) - L(2)] dt,

®)
= p(1y) dx, — H(2) dr,
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where H is the Hamiltonian.
More generally, if one varies not only x, and ¢, but also x; and ¢,, and
if there are many generalized coordinates x,, then d§ is given by

N N
dS = Y ple)dx,; — Y plr)dx,; — H2)dr, + H()de, . (9)
i=1 j=1
We will now show how in a simple case the preceding equations can be
applied to find the conservation laws.

2. Constants of the Motion in a Simple Case

We will consider here an ensemble of interacting particles having as
their Lagrangian

L=Y3mi Y Vit —x)). (10)
x x<f

Such a Lagrangian is clearly invariant under the transformation ¢t — ¢ + ¢

(translation by ¢ in the time dimension). The action will be unchanged if

the times ¢, and ¢, are displaced by the same amount e, the initial and

final coordinates of the path being fixed. For an infinitesimal translation

dt, = dt, = & we then get on one hand

dS =20 (1D
and on the other from (9)

ds = [H(1) — H2)] . (12)

Thus H(1) = H(2). H is conserved for a time-independent Lagrangian.
The Hamiltonian in this circumstance corresponds to the total energy,
which is thereby a constant of the motion.

The Lagrangian (10) is also invariant under all spatial translations
(r, = r, + 7). Such a transformation changes neither the velocities of the
particles (and therefore their kinetic energy) nor their relative positions
(and thus their potential energy). For an infinitesimal spatial translation
dr,, = dr,, = q (for all «), d7; = d¢, = 0, the infinitesimal variation of S
is given [using (9)] by

ds = [Z P12) — ) pz(’l)} . (13)

Now since dS is zero as a result of the invariance of L with respect to
translation, it follows that the total momentum ¥ _p, is a constant of the
motion.
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Finally, the Lagrangian (10) is invariant under all rotations. If one
considers an infinitesimal rotation dg about an axis n (r, - r, +
den X r, for all a), an argument analogous to that above leads to

dS = [Z pz(’Z) ) (nX rJ(IZ)) - pr(fl) ) (n X rz([l))} d(ﬂ = 0 (14)

The axis n being arbitrary, one concludes that the angular momentum
Y. Ta X P, 18 a constant of the motion.

Thus we have been able to associate a constant of the motion with each
continuous symmetry transformation group of the Lagrangian L.

3. Conservation of Energy for the System Charges + Field

The procedure which we will follow in this section and those following
is conceptually identical to those introduced above in the discrete case.
Equation (9) when extended to the case of electrodynamics in the Coulomb
gauge becomes

ds = ¥ py(1,).dr,, + J k[T, 1,).dety (k) + (k. 1,).d.dF(K)] —

= Y pdty).dr, — fd‘*k[ﬂt *(k, 1y).dof (k) + 7wk t).dos F (k)]

— H(2)dt, + H(1)d1, (15)

where H is the Hamiltonian of the system particles + field, r, and p, the
coordinates and conjugate momenta of the particles a, and 7r(k) the
conjugate momenta associated with the dynamical variables &7 (k) of the
transverse field. dS is the variation of the action between two “real
motions” whose initial and final positions differ respectively by
dr,,, d« (k),ds; and by dr,_, d.o7,(k). ds,.

Now the Lagrangian in the Coulomb gauge was introduced in Part C
and is given by

Lo 0P [ >
gzmz l‘f — J‘dBkW + d}/\’gc (16.a)

D= ol d — PKEA* A 4o + [ ¥ (16.b)

L

It is obviously invariant under time translation. Reasoning analogous to
that above allows one to show that dS = 0 if ds, = dr, and if all of the
other variations dr,,, dr,,, d«/ (k), and d.«/,(k) are zero, which gives
[using (15)] H(1) = H(2). Thus the invariance of the Lagrangian (16)
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under time translation implies that the Hamiltonian of the system parti-
cles + field is a constant of the motion. One will recall that such a
Hamiltonian is written [see (C.28)]

.1
H = Zm Ip, — 9, A(r)]* +

%,
+ Veou + {d‘*k [”—ZE AR ,oii| (17)
€0

o

and represents the sum of the kinetic energies of the particles, their
Coulomb energies, and the energy of the transverse field.

4. Conservation of the Total Momentum

The electrodynamic Lagrangian is also invariant under spatial transla-
tions. We will verify this using its expression (16.b) in reciprocal space.
Assume that one translates the particles and the field simultaneously by
the same amount . The new coordinates of the particles are

r,=1,+71 (18)
while the translated field A'(r, 1) is equal to
Ar, ) = A(r — 0, 1) (19)
so that in reciprocal space
o'k 1) = oAk 1)e ™ (20)

(Note that o/ is transverse just like »/.) The Lagrangian of the particles
[similar to (10)] is unchanged under the transformation (18). The
Lagrangian of the field, which involves quantities of the type E s
also unchanged on account of (20). The interaction Lagrangian is not
modified for the same reason, the terms j'* - &/’ being unaltered because
the law of transformation for 7’ has the same form as (20). The invariance
of L under translation implies then that S does not vary under a
translation.

We will now find dS using (15). To this end, it is necessary first to
relate d.Z to m using (20) for infinitesimal v:

ded = — i(k * ) of @b

By substituting this value in (15), replacing 1 by —¢,€, , and extending
the integral over k to all reciprocal space, one gets the following conserved
quantity:

P=Y0p + & Jd%(oﬁ* -l )ik, (22)
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Thanks to the transversality of & , the last term of (22) can be rewritten
as a double vector product, and we get finally

P:Zpa+eojd3k(§l* x (ik x o). (23)

This expression, giving the total momentum, coincides with that given in
Chapter I [(B.45) and (B.39.b)]. The translational invariance of the La-
grangian then implies the conservation of the total momentum of the
system particles + fleld.

5. Conservation of the Total Angular Momentum

Consider a rotation # of the ensemble particles + field through an
angle dg about the axis n. The new coordinates of the particles are

r,=r, +don xr,. (24)
The field A’ after rotation is equal to
A1) = RAR " '1,1) (25)
so that in reciprocal space

Ak 1) = Rl (R 'K 1). (26)

[To go from (25) to (26) it is sufficient to note that the scalar productk - r
appearing in the Fourier transformation is unchanged under a simultane-
ous rotation of k and r. Note also that (26) insures the transversality of
&7'.] Finally, for an infinitesimal rotation, (26) becomes

Ak t) =k —don x k1) +denx ok —donx ki) (27)
so that to first order in de,
de/(k, 1) =dp { —[(mn x k) - F] .o/ +n x o} (28)

where ¥ is the gradient operator in reciprocal space.

Under the rotation, the Lagrangian of the particles is invariant, since
the relative positions of the particles are unaltered (Coulomb interaction).
The Lagrangian of the transverse field involves integrals over reciprocal
space of the type &Z'*(k, ) - &/’(k, 1), which with (26) are also equal to
SRk, 1) - L (P 'k, 1). Taking k' = # 'k as the variable of inte-
gration shows the invariance of this term. Finally, the interaction
Lagrangian between the particles and field contains the scalar product
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7 ¥k, 1) - &'(k, t). The current j transforms under rotation like A, and
the invariance of this term is seen in an identical fashion. Finally, the total
Lagrangian (16) is invariant under a rotation by angle dg around n. It
follows that the differential of the action corresponding to this coordinate
transformation is zero.

We will now evaluate dS using (15). To this end, we will replace dr,
and d &7 by their values given as functions of dg. Additionally, expressing
7T as a function of &, and extending the integral to all reciprocal space,
one sees that the quantity

Yop,cmxr) + Jd3keo[(§l* {nxKk) -V} —&EF-(nxof)]
(29)

is conserved. Equation (29) can then be written

L [Zr1 X P, + ¢ Jd%{ Y &K x V), + EF Mﬂ. (30)
a a=x,y.z

This quantity being conserved for any direction of the vector n, one finds

a new constant of the motion,

J=Yr, ><p1+eofd3k{z(5”j;(k XV ) o, + EF x .ﬂ}. 31)

One recognizes in (31) the total angular momentum, which is the angular
momentum of the particles and of the longitudinal field [first term as in
(8), Complement B,] plus the angular momentum of the transverse field
[see (11) of Complement B,].

GENERAL REFERENCES AND ADDITIONAL READING

The results derived in this complement constitute an example of the
application of Noether’s theorem, which relates the symmetries of the
Lagrangian to the constants of the motion. The reader interested in this
theorem can refer to more advanced works on field theory such as
Bogoliubov and Shirkov (Chapter I) or Itzykson and Zuber (Chapter I).
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COMPLEMENT C,,

ELECTRODYNAMICS IN THE PRESENCE OF
AN EXTERNAL FIELD

In Chapter II the particles and the electromagnetic field have been
treated as forming an isolated system. Now it is often necessary to
describe the dynamics of the system particles + electromagnetic field in
the presence of an externally applied field. We will first show (§C;.1) how
to distinguish the external field in this formalism. We will then give
(§C ;.2) the Lagrangian and then (§Cy;.3) the Hamiltonian of the system
made up of the particles and the electromagnetic field in the presence of
an externally applied field.

1. Separation of the External Field

In the electrodynamic theory developed earlier, the electromagnetic
field is a dynamical variable whose value can not be fixed a priori. If one
wishes to study the evolution of the system particles + electromagnetic
field in an externally applied field, one proceeds in the theory as in
practice and lays out around the system external sources which are
determined experimentally to give the desired field. The particles then
evolve under the simultaneous action of the external field and the rest of
the electromagnetic field—in particular, the field created by their own
dynamics. On the other hand, we assume that the sources of the external
field are not part of the dynamical system. The charge and current
densities of these sources, p,(r, ) and j,(r, 1), will be considered as given
functions of time, fixed independently of the field of the particles. We thus
assume either that the reaction of the field back on the external sources is
negligible or that it is compensated for by the experimental arrangement.

The external field can be described by the potentials A (r,f) and
U,(r, t), which are solutions of the equations [analogous to (A.11) of
Chapter I]

AU, + V- A, = — =2 (1.a)

K, — MM +CVV-A) + V0, =2 (1.b)

0

(Note that it is not necessary to choose the Coulomb gauge to describe the
field of the sources.)
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Let A, and U, be the potentials corresponding to the total electromag-
netic field. It is useful to introduce new dynamical field variables A and U
such that

A )= A1) + Ar, 1) (2.a)
Ufr,t)y = Ufr, 1) + U, t). (2.b)

The structure of Equations (1) and (2) clearly shows that A and U are the
potentials corresponding to the sum of the free field and the field created
by the particles. As a result of the linearity of Maxwell’s equations, A and
U will satisfy equations analogous to (1) but where the charge and current
densities correspond to the particles of the system only. As for the
dynamics of the particles, it is fixed by the Lorentz equations, where the
field is the total field corresponding to the potentials A, and U,.

We will introduce in the following section a Lagrangian whose Lagrange
equations correspond precisely to these specifications.

2. The Lagrangian in the Presence of an External Field
a) INTRODUCTION OF A LAGRANGIAN

We will consider the following Lagrangian, where the dynamical vari-
ables of the field are {A(r), U(r), A(r), U(r)}:

L= Z%ma i'azt + %str[(~ VU — [.\)2 - CZ(V % A)Z] +

+ fd%[j,, “(A, +A) = pp(U, + U)]. (3)

In this Lagrangian pp(r, ¢) and jp(r, ¢) are the charge and current densities
of the particles of the system only. Calculations analogous to those of §B.2
give the following Lagrange equations for the particles and the field
respectively:

m, .l:a = qa[Ee (r1’ [) + E(rz’ I)] + q, l:az x [Be(rqﬂ [) + B(rzw [)] (43)

AU +V-A=_"Pr (4.b)
€o
A— AL+ AV(V-A) + V0 =2 (4.¢)

0

The dynamics of the particles is thus determined by the total electromag-
netic field (E, = E, + E, B, = B, + B), while the dynamical variables of
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the field A and U are only related to the charge and current densities of
the particles.

b) THE LAGRANGIAN IN THE COULOMB GAUGE

The elimination of U and the choice of the Coulomb gauge for the
dynamical field variables is made in the same way as in Part C. We then
get a Lagrangian similar to that given by (C.13),

L= Z%mz 12— Veouw + fd*‘k L (5.a)

N Ry Ly S A I SR C A Al
+jpc (dF AT pp wr — pEU,. (5.b)
In this Lagrangian the potential &/ is transverse (from the Coulomb
gauge choice):
/) =0. (6)

On the other hand, we have not necessarily chosen the same gauge for the
external field. That is why %, and &, can appear in (5.b). In the same
way, Equations (2), giving the potentials of the total electromagnetic field,
now take in the reciprocal space the following form:

of, = l, + oA, (7.a)
Ay =, (7.b)
Pp
U = U . 7.
4 . + = (7.0

3. The Hamiltonian in the Presence of an External Field

a) CONJUGATE MOMENTA
To find the conjugate momenta, one follows the procedure of §C.3. We
then get immediately the generalization of (C.19) for the particles,
P, = m, i, + 4,[A(r) + AL, D] ®)
and the expression (C.21) for the field,
T(K) = &g (k) 9)

where T, = 0.5/ 9. * is the momentum associated with the dynamical
variable 7.
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b) THE HAMILTONIAN

The Hamiltonian of the system in the Coulomb gauge is found as in
§C.3. Using (C.27), we find

H-Y

~2m,

+ VCoul + {vd}k[p; 92/(, + ,[)p }Zle*]

T TT*
+ & fd’k[ 3 +c2k2d'&i*}.
o

(10)

It is possible to decompose H into three terms
H=H, + H, + H, (11)

which are described below. These terms correspond respectively to the
Hamiltonian H, of the particles evolving in the Coulomb field and in
the external field, to the Hamiltonian Hj of the free field, and to the
interaction Hamiltonian H, describing the coupling between the radiation
field and the particles evolving in the external field:

-5

e)2

+ VCoul + Jd3r pP(r) Lre(rw [) (12)

where
p: =P, _que(rwt)' (13)

We emphasize that the momentum conjugate with r, is p, and not pf,
which is a useful physical variable to which it is related.
Hg and H,; are equal to

7T - *
HR = g, Jﬁd}k[ Zn i (,2 k2 o - .d*} (14)
L o
H :~£Zp"-A(r)+ 4 AXr) (15)
I m, 4t x 2m, x

where pf, has been introduced in (13).

¢) QUANTIZATION

The quantization of the theory is carried out like that of §C.4 and
results in the following commutation relations for the particles and the



c,3 Electrodynamics in the Presence of an External Field 145

field
[(rz)i* (pﬂ)J] lﬁ (Slj 51{] (163-)
[#(k), TT,(K)] = ikd, ok + k) (16.b)
[(k). T (K)] = iR 6, ok — k). (16.¢)

It is important to note thkat the commutation relations for the particles are
given in terms of p, and rot pS. Note further that the Cartesian compo-
nents of pf, do not commute among themselves:

(09, (p5);] = 17 6,5 g, Z e[ Belrss ], - (17)

Finally, we want to emphasize that in the absence of particles, the total
field does not reduce to that which we call the external field. Actually, we
will show in Chapter III that the quantum field associated with the vector
potential &/ | appearing in (7.a), whose dynamics is described by (14), is
zero only in its mean value. The fluctuations of 7, constitute what one
calls the vacuum fluctuations. In the absence of particles, the total field is
thus the superposition of the external field and the vacuum fluctuations.
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Exercise 1.
Exercise 2.

Exercise 3.

Exercise 4.

Exercise 5.
Exercise 6

Exercise 7.

Exercise 8.
Exercise 9.

Exercises D,.1

COMPLEMENT D,
EXERCISES

An example of a Hamiltonian different from the energy.

From a discrete to a continuous system: Introduction of
the Lagrangian and Hamiltonian densities.

Lagrange’s equations for the components of the electro-
magnetic field in real space.

Lagrange’s equations for the standard Lagrangian in the
Coulomb gauge.

Momentum and angular momentum of an arbitrary field.
A Lagrangian using complex variables and linear in ve-
locity.

Lagrangian and Hamiltonian descriptions of the
Schrddinger matter fleld.

Quantization of the Schrodinger field.

Schrédinger equation of a particle in an electromagnetic
field: Arbitrariness of phase and gauge invariance.

1. AN EXAMPLE OF A HAMILTONIAN DIFFERENT FROM THE ENERGY

Consider the Lagrangian

L = mxj — mwd xy . )

a) Write the Lagrange equations associated with L. With what physi-
cal system is L associated? What is a priori the energy E for such a

system?

b) Find the Hamiltonian H associated with L. Compare E and H.

Solution

a) From (1) one gets

i = my (2.a)

~
~

= — mogy (2.b)

l

-

L . (L 5
i (2.0 ;— = - mo5X. (2.d)
Cr

The Lagrange equations

N .
= — mmgyy (3.a) nx = — mogx (3.b)

are those of two harmonic oscillators with the same frequency w,. The total energy E for
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these two oscillators is a priori

1

. . 1 . 1 1
E = 3 mx? + 3 my? + 3 mwg x* 4+ = mod 2 (4)

2

b) The conjugate momenta associated with x and y are gotten from (2.a) and (2.¢) and
lead to the following Hamiltonian:
H = mxy 4+ moj xy (5)
which is different from the energy (4).

2. FROM A DISCRETE TO A CONTINUOUS SYSTEM! INTRODUCTION OF THE
LAGRANGIAN AND HAMILTONIAN DENSITIES

The purpose of this exercise is to introduce intuitively the concept of
the Lagrangian and Hamiltonian densities of a continuous system by
studying how a discrete mechanical system can be transformed into a
continuous one.

(i) The discrete system. Consider an infinite set of point particles with
mass m aligned along the x-axis with equilibrium spacing a. The displace-
ment along the x-axis of the nth particle (whose equilibrium position is
na) is called g,. The state of the system at ¢ is fixed by giving the
dynamical variables ¢,(¢) and ¢,(1). The potential energy of the system of
n particles depends on their separations and is equal to

1
V = Ema)fz(qn+l - q")l . (1)

a) Write the Lagrangian of this system. Derive the equations of motion
(Lagrange’s equations).
b) Look for a solution of the form

q,,(t) — 5 ei(kna—wr) . (2)

What relationship is there between w and k? Denote by v the phase
velocity v = w/k. Give the value v, of v in the long-wavelength limit
(k - 0).

¢) Calculate the conjugate momentum p, for the coordinate q,, and
find the Hamiltonian. Give the canonical commutation relation between
q, and p,.

(ii) The continuous system gotten by passing to the limit. Let the
distance a between two adjacent particles and the mass m of each particle
g0 to zero in such a way that the mass per unit length. p = m/a, is kept
constant. Similarly, let @, vary in such a way that when a goes to 0. v,
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remains constant. One gets then in this limit a continuous string with mass
per unit length p and where the velocity of sound is v,

The discrete dynamical variable ¢,(¢) which represents the displace-
ment of the point na becomes a continuous variable g(x, t) giving the
displacement of a point on the string whose equilibrium position is x.
Similarly, ¢, () becomes dg(x, t)/3(¢) in the continuous limit. One then
moves from a discrete index n to a continuous index x.

a) Show that at the continuous limit, the Lagrangian can be put in the
form L = {dx &, where % is a function to be determined.

b) What is the continuous limit of the equations of motion gotten from
the discrete case? Is this result identical to that gotten using the La-
grangian density and Lagrange’s equations for a continuous system?

¢) The momentum IT(x) conjugate with the continuous variable g(x)
is defined by IT(x) = 3.9/94(x). Show that II(x) corresponds to the
limit of p,/a when a goes to zero. Write the Hamiltonian of the
continuous system in the form H = [dx 5, and give the expression for
the Hamiltonian density 5.

d) Show how the commutator [q,, p, ] = 143, from the discrete case
becomes [g(x), II(x")] = 1A8(x — x’) in the continuous case.

Solution
(i)

a) The Lagrangian of this system of point particles is

. 1
L=Y5mi = Y 3moi., — ) 3)
The relations
Ty (4.2)
Cdn
L

- MOy, — dn) — MO dy = a0 1) (4.b)
-2,

lead to the cquations of motion
by = Of ey — 4) = O34y = du-) - (5)

b) Equation (2) for ¢, is the solution of (5) if
2 21 otk ikat 2 2 ka
-l =offe* -1 — (1 —e )] = — 4opsm 5 (6)

We calculate the phase velocity and its limit when A — O:

REON in ka
sin —

k 2
=0, d. (8)

=

(N

l()
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¢) Using the results of §A.1 of Chapter II, one gets immediately

o = m4, (9.2)
H=3Yp. b, — L
1 2 1 2 2
=Z§mq" +Z§m(“1(4n+1 — 4y (9.b)
[dn P} = iR 6, . 9.0)
(if)
«) The Lagrangian (3) can be written
(42 18 Wary — 4’
L:;tZ(llif-ioq—iazi- (10)

since p = m/a and v, = w,a. When « goes to zero. (4, ,; — 4,)/a tends to dq(x)/dx and

Equation (10) becomes
_ ﬁ; N2 2 2q(x)\?
Jvdxzt(q(.\)) LO< e ) | (11.a)
The Lagrangian density £ is then given by

F ~ a2
() — 2(‘—‘(’—(;\—)> WI (11.b)

b) The equation of motion (5) can be rewritten in the form

¢ =

o=

4, = o} d? 1 — dn).a] ; g — du) @l (12)
When a — 0.
(Unor — gy — 4D (13.2)
X
(q"Aq"vl)/‘a—*M (13.b)
X

and thus Equation (12) tends to

o = 13 4 (14

which can also be gotten by using (11.b) and Lagrange’s equation (A.39).
¢) Using (11), one gets

(x) = uglx) (15)
which corresponds to the limit of p,/a when « tends to 0. The Hamiltonian H of the
discrete system

H=3%p,q - L—aZ—z}n (16.a)
has as its limit when ¢ — 0
= jd.\mff (16.b)

# = (x)g(x) - & (16.¢)
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so that, using (11.b),

”Z,' 2/ ¥ 2
w =1 +;zl£(“;(\f)> (17)

2u
d) The commutation relation (9.c) divided by ¢ becomes
(4 Purra] = 116,10 (18)
The function on the right is zero for n # n’ and has, in the limit « — 0, an infinite value for

n = n’. Furthermore, one has

Y a (19)

which corresponds in the continuous limit to fdx'8§(x — x'} = 1. One concludes that the
continuous limit of (18) is

[¢(x). H(x)] = ih 3(x — X) (20)

which is effectively the quantum canonical commutation relation (A.47.c) for a continuous
system.

3. LAGRANGE’S EQUATIONS FOR THE COMPONENTS OF THE
ELECTROMAGNETIC FIELD IN REAL SPACE

Starting from the expression for the standard Lagrangian
L= Z%mrf + %f’ Jd3r[E2(r) — 2 Bin)] +
+ Jd3r[j(r)-A(r) — p(r) UM)]. (D)

find the Lagrange equations for the field and show that they agree with
Maxwell’s equations. Use the field components in real space (not in
reciprocal space, since that has been done in §B.2 of this chapter). The
dynamical variables of the fields are the potentials U(r) and A(r), and their
time derivatives are U(r) and A(r).

Solution
Replace E and B in (1) by
E(r) = — A(r) - VU(D) 2.2) B =V x A(r). (2.b)

The Lagrange equation relative to U is found by evaluating .4/dU, .4/9U., a&/d(d,U),
where # is the Lagrangian density

¥ 4 ¥ ¥ (E
=0 (3. = - . == i _— o (3.0
- G g p (D) AU oE, dquy - ek

from which one gets Lagrange’s equation
4 Y OE =0 @

that is, v-E=£2 (5)
o
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The Lagrange equation relative to 4, requires knowing d.%/9 4, . 3.£/34, . aL/3(3,4, )

(Y YK
(—\fik CE, (":.1,\ = - g Fy (6.a)
¥
(AAA =/ (6-b)
Y (¥ (B 2
=) o T =~ b € i B; .c
(A X,F . C(C,A4y) fo ¢ Zif”" ! (6-¢)
Hence Lagrange’s equation is
= tg v =i+ 8 P Y £ (B M
Iy
which is the projection on e, of the equation
b 1
VxB==E j .
Erar el ®)

4, LAGRANGE’S EQUATIONS FOR THE STANDARD [LAGRANGIAN IN THE
COULOMB GAUGE

Consider the standard Lagrangian in Coulomb gauge,

— ‘1 22 v _ al qaqﬂ
L—éimar,*gacm I;ﬂ———4n80|r1‘rﬂ!+LC (1)
with
Lo = fd%z = Jvd}F Zc (2.2)
D= el d*d — AKEA* A 4 E e d + [ Ad* (2.b)

Vo= DA - AV XA A (2.0)

Write Lagrange’s equations and find the equations of motion for the
dynamical variables (r,), of the particles and 27 (k) of the electromagnetic
field. Show, in particular, that the source term of the equation of evolution
of A(r) is the transverse component of the current, j  (r).

Solution

Consider first the particle variables, and calculate 3L /3 (r,), and 31./3(¢,),. Using (1), (2.a).
and (2.c), one gets

L g, 4y {r, — 1), [

- RER ARG S 1/ E R - <At 3.a
ar),  Fhdmey I -1 I* 1 Ary); [+, (r,. 0] B
(‘L = m(r,); + g, Afr,. 1) (3.b)
o(r)),

The last terms of (3) arise from replacement of j by its explicit form. One gets the Lagrange
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equation associated with r, using a procedure analogous to that of §B.2.4. Rearranging the
terms (as in §B.2.a), one finds the following equation of motion:

mr, =g Z e/ rﬂ) - A D)
o i} /rrz4m;()|r1 7"/1‘} Ct

-| + g, 1, x B(r, ). (4)

Consider now the field variables .#7,(k) and #.(k). Calculate 0L, /3% and 9.2, /dA*
using (2.b):

7, .

(i.a/(* = - g,k + e (5.a)
7 .

Lo L gy, (5.b)
A

The Lagrange equation (A.52.b) then gives the equation describing the dynamics of &,

5ok = (6)
&g
Combining this equation and that associated with &, one gets, in real space,
|
OA = 71, - (7)

& ¢

The source term in the equation of evolution of A is j , which depends on j in a nonlocal
fashion [see (B.16) of Chapter IJ.

5. MOMENTUM AND ANGULAR MOMENTUM OF AN ARBITRARY FIELD

Let a field be defined by its components A (r) (j = 1,2,...,n) as-
sumed independent. Its dynamics is described by a Lagrangian density
L Afr)s o AL &An)] (¢ = ¢/cx, [y, ¢fez).

a) Consider a real motion going from the field state defined by 4!"(r)
at time 7, to that defined by 4{?(r) at 7,. Let the corresponding action
integral be

S :J dr Jd%ff(... Apso Apt o 0 AL (1

t

with A0 =y, = A and A(r) |-, = A(r). )

Another real, infinitesimally close motion goes in the same time interval
from a state 47%)(r) to 4;(r). S is the corresponding action integral.
Take

ds =8-S (3)
dA®M(r) = 4/P(r) - AP (r); similarly for d A (r). (4)

Using the method of Complement By, find dS as a function of d4{"(r)
and d 4P(r).
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b) Find the variation d4, of A, corresponding to an infinitesimal
translation of the field by an amount . Show that, if . is invariant with
respect to spatial translation,

Pz—Jd3 Z——(VA) (5)
Jj (A

is a constant of the motion. By definition, the physical quantity P is called
the field momentum (even if ¥ is no longer invariant with respect to
spatial translation). Here also look to Complement B,; for direction.

¢) In an analogous fashion show that the angular momentum of the
field is

J=—Jd’ Z——[(rxV)A] (6)
J(A

Solution

a) Let
dAr. 1) = A{r 1) — Afr, 1)

[ » [ L L
=Y [ dr -[d I {M}_ A, 5 Ao + g(ﬂ——(;ﬂj) ¢, dA[r, 1)}4 (7)
i

J iy

Integrate by parts the second term with respect to # and the last term with respect to x,.
Since the field vanishes at infinity, this becomes

S T P g(w’)A (_f
s =Y f di (d jl(A @il >r“ F(FiAj)) dAr 1) +
J

I.,l I

n

+ Y [d"rid,ﬂ(n/) )
i A

i

The integrand of the remaining integral is the product of d 4, (r. 1) by a term identically zero
for a real motion obeying the Lagrange equations. Only the last term of (8) remains:

tr

i

cA; 0"

J

ale
ds =Y [d"‘ridA (r.1)
I

(11

:Z[‘dx{ ‘dA(ZD_
Jo (A ‘A

-1,

dA”'} (9)
li=n }
b} Under an infinitesimal translation w, the field 4 ; becomes
Afr) = Afr —m) (10)
so that
dd, = A1) - A1) = - n- VA, (an
In particular
dA® = - - VAP da = - n- VA, (12)
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If the form of .# is invariant under translation, dS is identically zero for such a transforma-
tion. Equation (9) then implies that

“‘(Z) 5 S
-n- [d‘zr{(—.—l Vi) — ({
. (“AJ t, ("AI- 0

VA;“(r)} =0. (13)

The quantity defined by (5) has thus the same value at ¢, and #,. It is a constant of the
motion.
¢) The variation of the field in a rotation d¢ about the axis u is
dd; = — [(udp x 1)~ V] 4y
= - udy - (rx V)A(n).
The same type of proof as in b) shows that if . is invariant under rotation, the angular
momentum of the field given in (6) is a constant of the motion.

We note that the angular momentum of the field is expressed by an angular momentum
density # just as the momentum is the sum of a momentum density #:

(14

s -3y - L (VA) (15.a)
J ‘A,
‘Y ] <
Jm =3 - ——[rxV)yd] (15.b)
j ‘A,

2(r) and £ (r) are given as functions of the field, its gradient, and its conjugate momentum
at the same point r.

6. A LAGRANGIAN USING COMPLEX VARIABLES AND LINEAR IN VELOCITY

This exercise examines a Lagrangian L dependent on one complex
variable z. Since the structure of L is analogous to that of the Lagrangian
density used to describe the dynamics of the Dirac and Schrédinger
matter fields, the results established here will be useful for the following
three exercises as well as Exercises 5 and 6 of Chapter V.

Consider the following Lagrangian L which depends on the complex
variable z:

ih .
L= 5 (Fz—*%2)— f(o, =* (1)
where f is a real function of z and z*.

a) Write the Lagrange equations relative to L and show that by giving
z(t,) the evolution of the system is completely determined.

b) Find dL/37 and dL/3:* as well as

Y
H::ﬂ—,+:*ii-L. )
«Z z

-

¢) Using the results above, show that there are redundant dynamical
variables in the Lagrangian (1).
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d) Set z = x + iy. Write the Lagrangian as a function of x, y, X, and
y. [Take f(z, z*) = g(x, )]

e) Show that by adding to L the total derivative with respect to time of
a function of x and y, one can eliminate y from the Lagrangian. Call the
new Lagrangian L' ]

f) Show, without going into detailed calculations, that it is possible to
find a Lagrangian L’ depending only on x and %. (One will eliminate y
from L’ using the Lagrange equation relative to y.) Show that

cL ¢l
= 3)
(X X

What is the momentum conjugate with x in L’? Find the Hamiltonian H’
associated with L’.

g) Proceed to the quantization of the theory based on L’. Find the
commutator [x, y].

k) Express the preceding results as a function of the initial complex
variables z and z*. First show that H’ coincides with H. Next find the
value of the commutator [z, z*] resulting from quantization. Show that
the result obtained differs from that which would have been gotten by
quantizing the theory hastily, taking dL/dZ* as the momentum conjugate
with z.

Solution
a) Find dL/d:z* and dL/3:*:

(L. , L in
R B (4.2) oo 27 (*+0)

From Lagrange’s equation one gets the following equation of motion:

in: = L )

which is first order in time. Giving z(#,) then fixes the subsequent behavior of the system.
h) dL/3#* is given in (4b) and coincides to within a multiplicative factor with :.
Likewise, dL/3: is proportional to z*. Using these expressions, we get

5—_+5*;L=ig(i—_-*—£*:) 6)
(z (o <

H = f(z%). %)

¢) In the Lagrangian formalism the evolution of a system is determined by giving the
coordinates and velocities at the initial time. The fact that giving z(7,) suffices to determine
the evolution of the system proves that one cannot consider z, z*, Z, and Z* as independent
variables. Likewise, the conjugate momenta of = and z* coincide (to within a multiplicative
factor) with these variables and cannot be considered as independent variables, which

prevents basing a Hamiltonian theory on H.
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d) Replacing z by x + iy, one finds
oKD o= 200w — 1) (8)
L = Ry¥ — xi) - g(x. 1) (9
e) Consider L’ = L + du(x, y)/dt with
u(x.y) = hxy (10)

One gets immediately
L' =28y — glx. p). (11)

f) The Lagrange equation relative to y is written

L
=0
Cy 12
that is to say
2ﬁi~—ﬁg(,\-,r)=of (13)

Solution of this equation fixes y as a function of x and x. If this is now substituted in L',
one gets a new Lagrangian L’ which is a function of x and x only. Calculate 9L’ /9x:

iL_d e (14)
‘x

X

X

The equality (3) derives directly from (14) and (12). This equality gives with (11)

pe= = =2 (15)

where y is the function of x and % fixed by (13). The Hamiltonian /{" associated with L is
equal to

H =xp — L
=2 hixy — (2 hixy - glxov)
=g(x,v) = glx.p 2 h). (o)

g) Knowing that [x, p,] = ifi, we get using (15)

i
{x. »] =3 (17)
k) Comparison of (16) and (7) shows that H and H’ are equal. We find the commutator
[z, 2" ] using (17):

[z =% =[x + iy, x — iy] =i[y, x] — i[x, 1] (18)

so that 21 =1. 19

If we had taken AL/d7* as the momentum conjugate with z, we would have gotten by
applying (A.35.c) a commutator [z, z* ] equal to 2 rather than 1. This shows that one must be
careful in quantizing a theory where there is an overabundance of dynamical variables. In
summary, for a Lagrangian having the structure given in (1), it is possible to find the
Hamiltonian using (2) providing that one remembers that z* and z satisfy (19).
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7. LAGRANGIAN AND HAMILTONIAN DESCRIPTIONS OF THE SCHRODINGER
MATTER FIELD

Consider the Lagrangian L = J d*r & with

T L T R TAT Bt

In this Lagrangian ¢/(r) is considered as a complex classical field called the
Schrodinger matter field. The purpose of the exercise is first to derive
the Schrodinger equation from the Lagrangian (1), and then to show that
the physical quantities associated with the field (energy, momentum) arise
as the mean values in the state (r) of the usual quantum-mechanical
operators.

a) Show that the Lagrange equations associated with (1) coincide with
the Schrodinger equation.

b) Since the Schrédinger equation is a first-order equation in time,
giving (1, #,) 1s sufficient to fix the future evolution of the system. It
follows that the Lagrangian L taken as a function of /(r) and ¢*(r) and
their time derivatives contains an excess of dynamical variables. In order
to find the conjugate momenta and to pass to the Hamiltonian formalism,
it is necessary then to eliminate from (1) the redundant dynamic variables.
The procedure here is close to that introduced in Exercise 6 for the
discrete case, and the reader should have previously studied that exercise.

i) Let ¢, and ¥, be the real and imaginary parts of y:
Y(r) = ¥, (r) + w(r). (2)

Give & as a function of y (r), ¥,(r), and their temporal derivatives.

ii) Show that by adding to L the time derivative of a function (to be
found) of y,(r) and y,(r), one gets a new Lagrangian L’ equivalent to L
and no longer containing ¥,(r).

iii) Without detailing the calculations, show that it is possible to use
the Lagrange equation relative to y,(r) to eliminate , (r) from the
Lagrangian L’. The new Lagrangian which is obtained is a function only
of ¢ ,(r) and x[/ (r) and is denoted L.

iv) Show that, for a real motion

c.L _ (. L 3)
apr)  &plr)
and derive the conjugate momentum II (r) of ¢, (r). Give {(r) as a
function of ¢ ,(r) and I (r).
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¢) Show that the Hamiltonian H associated with L’ can be written
J &r ) [— Ly Vm} y. )

d) One recalls (see Exercise 5) that the total momentum of a field ¥ ,(r)
is equal to

P=— JdSr I,(r) Vi (r) . (5)

Show that the total momentum of the Schrodinger matter field can be
written

P= Jd3;'z//*(r) I%le(r). (6)

One will note that the expressions (4) and (6) coincide with the mean
values of the Hamiltonian and momentum operators in quantum mechan-
ics.

e) To proceed to the canonical quantization of the theory one replaces
the classical fields ¢(r) and ¢*(r) by operators ¥(r) and ¥ (r). Calculate,
using the canonical commutation relations between the operators associ-
ated with y,(r) and IT (r), the commutators [ ¥(r), ¥ " (r')] and [ ¥(r), ¥(r)].

Solution

a) We calculate the partial derivatives of the Lagrangian density appearing in the
Lagrange equation (A.52.b)

v
N A CL (7.b)
Y* P

s [
F((‘jl//)* - ﬁ(jl//‘ (7.¢)

Substituting these expressions in (A.52.b), we get
o~ Vi + E—Az// =0 8
" 2m h (8)

which is just the Schrddinger equation of a particle of mass m in a potential V(r).

b) To solve the Lagrange equations, it is necessary to know the coordinates and their
velocities at the initial time. The fact that giving only ¥(r, ) suffices to fix the subsequent
development of the system shows that one has an excess of dynamical variables.

i) Taking account of (2), the Lagrangian density (1) becomes

. . h?
L= Wb, = Vo) — 3 [T+ (] = VLG + ). ©)
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ii) Consider the following Lagrangian L’:

L' =L +% [d"r Y Ar) Y (n). (10)

It is clear that L’ and L are equivalent Lagrangians. since their difference is the derivative
with respect to time of a function of the coordinates. Starting from (9) and (10), one gets for
the Lagrangian density £’ associated with L’

ﬁl

=20, - 5

Vi, + (Vg ] — V! + ) (n

which does not depend on y,.
iriy The Lagrange equation relative to ¢,,

7L
=0 2

7 (12

T -V(~>w+’imp—o (13
v, r)yyy T m P = )

allows one to express y,(r) at each instant as a function of ¥, (r). Substituting this expression
for ¢, (r) in L’, one gets a Lagrangian L’ which depends only on ¢, (r) and v, (r).

i) We calculate 3L’/ 8¢,(r) as a function of the functional derivatives of L’:
oL _ N 7L Fipr)
Tplry  TYny () T (r)

(14)

which, taking into account the Lagrange equation (12), leads to Equation (3). The conjugate
momentum I7,(r) of ¢,(r) is then equal to

() = — = — (15)

-—that is, following (11),
(r) = 2 Iy (r). (16)
Equations (2) and (16) then yield

W) = (0 + 5 114, (7

¢) The Hamiltonian density 5 is given by (A.45.b), which, taking into account (11) and
(16), gives

# = L) i) — LT b i)

n? o , (18)
= ,—m[(Vl//,.)2 + (V)] + Vil + wil.
The expression for H can be transformed using integration by parts:
[d]r(VI//,.)z = - [d“r v, Ay, (19

since the fields ¢ are equal to zero at infinity. One then gets

72 .
H = fdﬁrﬂ T A, A - V(] wn] (20)
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Noting that
[d""('//r Ay — W Ay,) =0 2

(which can be demonstrated with two integrations by parts) one can reexpress (20) as a
function of ¢ and ¢*. and then one gets (4) as stated.

d) Replace I1,(r) in (5) by its value (16). One then gets
P=- [d“rl T (r) Vi (1) . (22
By expressing y,(r) and ¢,(r) as functions of ¥(r) and *(r), one then finds

P = 711 Hd»‘r UE VY — [d“rl// Vi* - [d“r WY+ [d"rl//* vlp*w 23)

One integration by parts allows one to show that the second integral is the negative of the
first. As for the last two integrals, they lead to a zero result, since the term to intcgrate is of
the form yy?/2. Finally one finds

P = (d"rl//*(f) %le(r) (24
which agrees with (6).

e) One starts with the canonical commutation relation

[P0 1] = ild(r — 1) (25)
In the commutator [¥(r), ¥* (r)]. one expresses the operators ¥(r) and ¥ (r) as functions
of ¥ (r) and II,(r) using (17). This yields
+oor ’ ! ’
[P(r)., ¥ ()] = [PAr). P(r)] + e [1(r), O ()] -

i i ,
= 57 [P0 1100] + 57 L0 #,(0]. (26)

The first two commutators are zero. The last two give, using (25),
[P, ¥ (r)] = o(r — ). 27

The commutator [ ¥(r), ¥(r')] can be found in an analogous fashion, the result being
[¥(r). P(r)] = 0. (28)

The properties of the quantized Schrédinger field are studied in Exercise & In the first
part of this exercise, we start from the commutator (27) and show that the elementary
excitations of the quantized field thus gotten correspond to bosons. In the second part we
substitute for the canonical commutation relation (25) an anticommutation relation, which
leads to replacing (27) and (28) by

[P, ¥ ()], =dr —r) (29.a)
[¥(r). ¥()], = 0. (29.b)

We then show that the particles obtained after quantization of the theory are fermions.
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8. QUANTIZATION OF THE SCHRODINGER FIELD

Consider now the Schrodinger matter field whose classical properties
were examined in Exercise 7. After quantization of the theory, the classical
expression for the energy and momentum become operators given by

H = JdSI‘ ¥ *(r) (— 2—}%41 + V(r)> P(r) (1
P- [d%- ‘I’"L(r)}ziV‘I’(r) )

where ¥(r) is the field operator at point r. The main purpose of this
exercise is to show that the quantization of the field can be accomplished
starting either from the commutation relations between the operators and
the conjugate momenta [part (i)] or from the anticommutation relations
[part (i)]. A second purpose is to show that the particles associated with
the field are bosons in the first case and fermions in the second. (*)

(i) We postulate here that the fields ¥ and ¥ obey the following
relations:

[P(r). ¥ (r)] = o(r — 1) (3.a)
[P(r). ()] =0 (3.b)

a) The Heisenberg equation for the operator ¥ is written
inP(r) = [¥(r), H]. (4)

Find the commutator appearing in (4) using (1) for H and Equations (3),
and show that Equation (4) coincides with the Schrédinger equation for
the operator Y.

b) Show that the commutator [¥(r), P], where P is defined by (2), is
equal to —iAV ¥(r). What are the time and space translation operators
for the field ¥(r)?

¢) Take p(r) = ¥ (r)¥(r). Show that p(r) satisfies an equation of the
form

d .
G Pm+V-in=0 &)
where j(r) is an operator which is to be found.

d) Denote by @,(r) the eigenfunctions of [—(h>/2m)A + V(r)]:

TZ
— 71—m A@n(l') + V(I) q’,,(l') —_ En (pn([‘) . (6)

(*) See also Schiff, Chapter XIIL
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The spectrum of eigenvalues E, is assumed discrete. Let ¢, and ¢, be
operators defined by

Cn = J r () ¥(r) (7

and the adjoint relation. Find the commutators [c,, ¢,,] and [c,, ¢,
e) Show that the operator H defined in (1) can be put in the form

H=)E-c c,. (8)

f) Assume that in the state space of the quantum field where the
operators ¥(r), ¥Y'(r), c,, and ¢, act, there is a state |0), called the
vacuum, which satisfies

10> =0 (9)

for all n and which is normalizable ({0]|0) = 1). Show that (c,)?|0),
where p is a positive integer, is an eigenstate of H with eigenvalue pE,.
Give a particle interpretation for the elementary excitations of the quan-
tum field.

g) Let the operator N be defined by
= Jd%’ ¥ *(r) P(r). (10)

Show that N is equal to ¥, N,,, where N, = ¢ c,. Find N. How do you
interpret this result?

(ii) Assume now that the fields ¥ and ¥* obey the anticommutation
relations

[P(r). P ()], =o(r — 1) (11.a)
[P(r), Y], = 0. (11.b)

a) Starting from the Heisenberg equation (4) for the operator ¥ and
Equations (11), show that ¥(r) is always a solution of the Schrodinger
equation. Derive the commutator [¥(r), P] and show that it has the same
value as in the preceding section. What can one conclude from this?

b) Show that Equation (5) remains valid. Derive the commutator
[p(r), p(r)]. What can one conclude about the compatibility of the mea-
surements of these variables? Do these results depend on the commutation
or anticommutation relations between ¥(r) and ¥ *(r) postulated to
quantize the field?
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c) Using (6) and the definition (7) of the operators ¢,, find the
anticommutators [c,, ¢,,], and [c,, ¢,/ ] .. Show that Equation (8) for H as
a function of the operators ¢, ¢, remains valid.

d) Take [as in part (i)] N,, = ¢,.c,,- Show that this operator satisfies the
relationship

N2=N,,. (12)

m
Show that the eigenvalues of N, can only be 0 or 1.

e) Show that ¢, |0) [the vacuum |0) being defined as in part (i)] is a
state with one particle with energy E,. Can one have states with more
than one particle in state E,? What can one conclude about the nature
(boson or fermion) of the particles associated with the field?

Solution
(i) Field of bosons.
a) To find the commutator [¥(r), H], we use the identity
[4. BC] = [4. B] C + B[A. C] (13)

which gives

2
[¥(r). H] = fd%-’[l;f(r), ¥ (r)] (A ;LmA,, + V(,-')> w(r) +

v - oo <o
+ &P V). - — 4, = V() )P | (14

Equation (3.b) implies that the second term of (14) is zero. The first term is found with the
aid of (3.a), and so

712
(v, H] = (7 T4+ V(;)) ¥(r) (15)
Finally, using (4), one gets
ih‘}"(r):(Azf—A +V;))ly(r (16)

The equation of evolution of the field operator ¥(r) has the same form as the equation of
evolution of the classical field y(r), that is, the Schrédinger equation. Note that here ¥(r) is
a field operator and not a wave function. For this reason the procedure we are following here
is sometimes called *“second quantization”.

b) The derivation of {¥(r), P] is analogous to that of [ ¥(r), H]:
[¥(r). P] = ‘.d“r’[l}’(r)‘ ¥+ ()] }%V P(r) + ‘.d“r’ ¥ H(r) {‘P(r)‘ ,%V ‘I’(r’)-‘. (7

The second term of (17) is zero from (3.b), and the first term is, using (3.a),

[¥(r). P] = — il V¥(r). (18)
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This equation shows that P is the spatial translation generator for the field operator ¥, just
as H is the time translation operator. It follows that

P +ar)=¢e PP gPat (19.a)
Wit + 1) = e g, e (19.b)
¢) We calculate p(r):
d . .
W p(ry = ¥ () P + V() P (20)

Using (16) and the adjoint equation, we get

d _ h + 7] +

Y p(r) = 3 i [AY () () — ¥ (1 A¥(D] 21
since the term depending on ¥(r) vanishes. One transforms the right-hand side of (21) by
introducing

h . ) N
) = 5 [ (O (V#m) — (V) ¥ (22)

This becomes dp/dt = — V - j, which coincides with Equation (5) as stated and which
generalizes the continuity relation (conservation of probability) to quantum operators.

d) The commutator [c,, ¢,,] is equal to

m

[Cas €l = [d‘r d*r () ox(r) [W(n). ()] (23)
and thus vanishes on account of (3.b):
[ens ] = 0. 24

.t

The commutator [¢,, ¢,,] is found in an analogous fashion:

e, chl = [d-‘rd-‘r’ @F(r) @, (r) [F(r), ¥ "] (25)

which according to (3.a) is

lens €]

(d’r d* p*(r) @, () (r — 1) (26)

il

[d“r @*(r) @, (r) .

Since the {¢,(r)} are orthonormal, one has
[n Cm] = Oy - 27
) Multiply both sides of (7) by g,(r) and sum on ». Using the closure relation, one then
gets
P = 2 odn) ¢, (28)
which is analogous to the expansion of a v:'/ave function ¥(r) in the orthonormal basis

{¢,(n)}. Note now that in (28), ¥(r) and c, are operators. Substituting this expression in (1)
and using (6), one finds

H=73% [d“r @MN) E, 0,(r) i ¢, (29)

so that using the orthonormalization of the wave functions @, (r),
H=YE ¢ ¢. 30)
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f) The form (8) for H and the commutation relations (24) and (27) are those of a set of
independent harmonic oscillators. If we postulate the existence of the vacuum {0), the
mathematical operations are identical to those used in the case of the harmonic oscillator.
We know then that [(¢, )"/ ‘/HHO) is a normalized eigenstate of H with eigenvalue pE,.
By making the creation operator ¢, act p times on |0) it is possible to obtain a state of the
system whose energy is p times the energy E,. This leads to the interpretation of this state of
the field as a state with p particles in state E,. The fact that p can be any integer, positive or
zero, is characteristic of a system of bosons.

g) Using (28), one transforms (10) into

N=2 [d% PRI 90 € €, 3n
Orthonormalization of the wave functions then gives

N=3%cnty=2N,. (32)

m

To find N,,, start with the Schrodinger equation (16) and express ¥(r) as in (28). One finds

2m

2
Y 0ulr) (= 2 (‘ Ly V(")) PulE) €y (33)

m

so that, using (6) and the fact that the {g, (r)} form a basis,

ihe, = E, ¢,. (34)
The derivative of N, with respect to time gives
N = bt o b (3%)
so that finally, using (34),
N,=0. (36)

We have seen in f) that N can be interpreted as the particle number operator for the
energy state E,, [since the action of N, on (¢,,)”|0) gives p times this same state]. It follows

that N =X, N, can be interpreted as the operator for the total number of particles.

mtm

Equation (36) shows that for the quantized Schrédinger field, the number of particles in the
energy state E,, remains constant. Note then that N can be written

N = Jd“r p(r)
and the conservation of N can be gotten directly from the cquation of continuity (5).

(i1) Field of fermions.
a) To caleulate [¥(r), H], one uses the following equations relating the commutator
(A4, BC] to the anticommutators [4, B]. and {4, Cl,:
[4.BC] =[A.B], C — B[4.C], . 37

-

We get then
() = [Pr). H]

= [d"r'[‘l’(r), ¥ (ry]. (—

i
2m

,l
_ [d-‘r' ‘I”(r’)[:‘}’(r)_ (/ 7”” J.0+ V(r')) ‘I’(r’)j| . (38)

4.+ V("')) () —
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The second term of the right-hand side of (38) is zero from (11.b), and the first one can be
found using (11.a), so that

. 2
inY(r) = [Yr), H] = (, %A + V(r)) W(r). (39)

It appears then that just as in part (i), the operator ¥(r) obeys the Schrddinger equation. The
calculation of [¥(r), P] is analogous:

[#(r).,P] = [d“r’[‘l’(r). Y], ,%V P(r) —

— [d“r’ ¥ (r) ’V‘I’(r). r;—V,, lP(r’)] (40)

+

The sccond term on the right-hand side is zero as a result of (11.b); the first one is found
using (11.a):
[P(r). P] = — in V¥(r). (41)

One finds then an expression identical to that in part (i). It is clear then that the quantization
of the theory by means of anticommutators is compatible with the fact that the operators H
and P introduced in (1) and (2) must be generators for the time and space translations.

b) The proof of (5) only requires Schrédinger’s equation (39). It is identical to that in
part (i). Now find the commutator [p(r), p(r)]:

[o(n. p(r)] = [¥ " (r) ¥(n), ¥ "(r) ¥(1')]
= ¥ () [P ¥ () w] + [P, P P . (42)

Using (37), one rewrites (42):

[p(r). p(r)] = ¥ ([ W(n. ¥ 7(r)], P(r) — ¥ () ¥ () [P P ], +
+ [P P )] P P~ P [P, P, P (43)

which simplifies using the anticommutation relations (11):

[pr). p(r)] = Y () ¥(r)dr — 1) = P (1YP()dr —r) =0, (44

One sees then that p(r) and p(r) commute even if ¥(r) and ¥(r') anticommute. This result
about the operator associated with the particle density has a clear physical meaning. It is
satisfying that two operators associated with local physical quantities taken at the same time
but at different points commute (see the remark (i) at the end of §A.2. g). An identical result
for [p(r), p(r)] will be gotten if one postulates the commutation relations (3) rather than
Equations (11).

¢) The anticommutator [c,, ¢, ], is equal to

[ Oy = [d’r & @X(r) X(r) [P(r), P(r')]. = 0. (45)

as a result of (11.b). For the anticommutator [c,, ¢, 1, . an analogous calculation using (11.a)
gives

fer mle = G- (46)

The proof of (8) in ¢) of part (i) does not rely on the commutation relations and thus remains
valid.

d) From the definition of N,,, one has

2t b
N = G O O O +7)

m
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Using the anticommutator [c,,, ¢,, ], = 1, one gets

N = o G = Cop G €y G (48)

Now the fact that the anticommutator [c,,. ¢,,]. must be zero shows that ¢, ¢, = 0, which

demonstrates the identity between (48) and (12). The cigenvalues of the Hermitian operator
N then must satisf . .

n y /~2 = A/ (49)

and can only have values 0 or 1.

€) One finds the action of N, on ¢, |0):

Nl 10> = ¢l een 10, (50)

By using the anticommutation relation [c,,., ¢, ], = 1 and the fact that ¢,,|0) = 0 one gets

N0 =¢r 0D (51)

N m(m

¢, |0) is thus an eigenstate of N,, with eigenvalue 1. Furthermore, it is clear that ¢ |0) is
nonzero. Its norm (0|c,¢;" |0) can be found using [c,,,¢,;], =1 and is 1. In contrast, since
the ¢ anticommute with themselves, we have (¢)? = 0, and more generally (¢,))7 = 0 if

m m "

p > 1. It is then impossible to construct, as was done in part (i), a state with more than one
particle in the same state E,. Actually we have already shown that the eigenvalues of N, are

”m

restricted to 0 and 1. Thus the particles associated with the quantized field are fermions.

9, SCHRODINGER EQUATION FOR A PARTICLE IN AN ELECTROMAGNETIC
FIELD: ARBITRARINESS OF PHASE AND GAUGE INVARIANCE

Consider the Lagrangian L = [d3r & where .# is the real Lagran-
gian density .

L S e
— V() + qU)y* . (D)

In this Lagrangian, y(r) is a classical complex field. The purpose of this
exercise is to show first that the Lagrange equations associated with L are
the Schrodinger equation of a particle in an electromagnetic field defined
by the potentials A(r, 7) and U(r, r). One will see then that any phase
modification of the matter field ¢ (r) is equivalent to a gauge transforma-
tion for the electromagnetic field.

a) Find the Lagrange equations associated with (1).
b) Make the change of variable

ll’(l‘, t) = lp’(l', [) e—in(r,g)% (2)

where F(r, 7) is an arbitrary function of r and . Give % as a function of
Y’ and F, and show that a change in phase of ¢ is mathematically
equivalent to a change of gauge.
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Solution

a) To get the Lagrange equation (A.52.b) one must take the following partial derivatives;

C Y ih
— = -y (3.)
Cy* -
[ g, ( ¢ ) )
= U gy — (Vo qU 3.
Cp* (// sz iy gA; ) = (V + qU)y (3.9)

L h (h 7

=— - =— - g4 . 3.
ACW® 2m ( iy, 4 ’) v (3-0)
One then gets the Lagrange equation
L , . 1 [k 2
lﬁll/A(V+¢1(J)'//‘;"; VoA )y =0 (4)

which is also the Schrodinger equation for a particle in an external electromagnetic field.
b) In the transformation (2). the time and space derivatives become

([/=(/}'c*'4”ui%13‘lp'e*w"" (5.2)
W =AY et ‘7’, iw e ol (5.b)

Putting these in the Lagrangian density (1) gives

# =Ty an'MAE%Rﬂ?VAmA+VH»W1[@V*MA+W”¢1

[V +qU - PY]y*y . (6)

The same Lagrangian density could have been gotten by keeping the same field ¢ and
making a gauge change on the potentials A and U:

A=A+ VF (7.2) U'=U - F, (7.b)



CHAPTER III

Quantum Electrodynamics in the
Coulomb Gauge

This chapter is devoted to a general presentation of quantum electrody-
namics in the Coulomb gauge. Its purpose is to establish the basic
elements of a quanrum description of the interactions between nonrela-
tivistic charged particles and photons and to emphasize several important
physical aspects of this theory.

We begin in Part A by introducing the general framework for such a
quantum theory. We review the fundamental commutation relations intro-
duced in an elementary fashion at the end of Chapter I and derived in a
more rigorous way in Chapter II. We make explicit the quantum operators
associated with the various physical variables of the system and analyze
the structure of the state space in which these operators act.

The problem of temporal evolution is then approached in Part B.
In the Schridinger picture the state vector of the global system obeys a
Schrédinger equation and the matrix elements of the evolution operator
between two states of the system are the transition amplitudes between
these two states. The Heisenberg picture leads to equations of motion for
the various variables of the system which are closely analogous to the
classical equations. In particular, the Maxwell-Lorentz equations remain
valid between operators. An additional advantage of this viewpoint is that
it is well suited to the introduction of important statistical functions like
the symmetric correlation functions or the linear susceptibilities.

Part C is devoted to a discussion of some important physical aspects of
the quantized free field. Different types of measurements and various
quantum states are reviewed and analyzed. We will see in particular that
the elementary excitations of the quantum field can be analyzed in terms
of particles having a well-defined energy and momentum, viz., the pho-
fons. A particularly important state is the ground state of the field. called

169
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the vacuum (of photons). We also introduce the coherent or quasi-classical
states, which are the quantum states of the field which correspond most
closely to a given classical state. Let us mention here that the discussion of
Part C is extended in Complement A, with an analysis of interference
phenomena (with one or more photons) and of the wave—particle duality
in the framework of the quantum theory of radiation.

We consider finally, in Part D, the Hamiltonian describing the interac-
tion between radiation and matter. The various terms of this Hamiltonian
are written down and their orders of magnitude evaluated. The selection
rules which the matrix elements obey are also examined.

We note finally that the global Hamiltonian of the system particles +
field can be transformed and put into a more convenient form in the
long-wavelength limit. Complements A, and By, of the next chapter
introduce in an elementary way the unitary transformation which allows
one to pass from the usual Hamiltonian (“in A - p”) to the electric dipole
Hamiltonian (“in E - r”). This is an example of a transformation for
passing from electrodynamics in the Coulomb gauge to an equivalent
formulation, a problem treated with more detail in Chapter IV.
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A—THE GENERAL FRAMEWORK

1. Fundamental Dynamical Variables. Commutation Relations

The fundamental dynamical variables for each particle « are the
position r, and the momentum p, of the particle, which satisfy the
commutaiion relations

{[rxi' rﬂj] = [pai’ pﬂj] =0
[rais Pyjl = 1h 0,5 0 (A1)
Lj=Xx)0z.

As was indicated at the end of Chapter I and justified in Chapter I1, the
normal variables &, and a*, which characterize the state of the classical
transverse field, become, following quantization, the destruction and cre-
ation operators a; and a; for fictitious harmonic oscillators associated

with the various modes of the field and satisfying the commutation
relations

{[aiﬂ a) = la;, aj+] =0
(la. af]= 9. (A.2)

Remark

We have explicitly used above the Schrodinger point of view where the
operators are time independent. The commutation relations (A.1) and (A.2)
remain valid in the Heisenberg formulation, provided that the two operators in
the commutation relation are taken at the same instant.

2. The Operators Associated with the Various Physical Variables
of the System

We begin with the various field observables. The operators associated
with the transverse fields E | (r), B(r), and A | (r) at each point r of space
are gotten by replacing «, with a, and a* with g, in the expansions of
the corresponding classical variables [see Equations (C.38), (C.39), and
(C.37) in Chapter I]:

E (r)= z 16, [0, €™ — af g e ] (A.3)

B(r) =Y 14, [0k, x g) ™" — o/ (k; x g)e ™ 7] (A9

i

A =) o, [ e + o g e ] (A.5)

t
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with

wi

fiwo, |2 & &
I B, = g =% (A6
2¢,L°

The total electric field E(r) is given by
Er)=E (r) + E|/(r) (A7)

where

1 r—r
E = z_ A8
O = e LTy T (A.8)

r

X$

The position r, of particle « in (A.8) is now an operator.

Since we have respected the ordering of «, and o in the calculations
leading to Equations (C.16) and (C.17) in Chapter I for the Hamiltonian
H,.. and the momentum P of the transverse field, it is not necessary

to redo these calculations in the quantum case, and we can write the
operator H, in the form

trans

e
H,,.. = -29 Jd“r[Ei(r) + ¢ B3(r)]

how.
=) —;—l[a;’ a; + aa'] = Z h‘”i[“i+ a; + %} (A.9)

i

[where we have used (A.2) to replace a,a;” by a}'a, + 1]. Similarly,
Pane = & Jd"r E (r) x B(r)

hk,;
R I T (A-10)
(using the relationship X 4k /2 = 0).

Finally, since we are in the Coulomb gauge (*) we have
An=10 (A.11)

U = 1 ¥ 4x

S dme, S r— 1,

(A.12)
U is simply the electrostatic potential of the charge distribution.

(*) As in Chapter II (see §C.1), we will omit hereafter the index L in A | | since in the
Coulomb gauge A and A | are the same.



II.A.2 The General Framework 173

Remarks

(1) Starting from the expansions (A.3) to (A.5) for the transverse fields in g,
and a; and the commutation relations (A.2), one can establish the following
expressions for the commutators between two components of the fields taken at
two different points r and r’ (see Exercise 1):

(4. 4] =0 (A.13)
[A(r), E_(r)] = 8—10 lzafj(r —r) (A.14)

where i, j = x, y, z and where b‘j is the “transverse delta function” defined
by (B.17.b) of Chapter I. One gets also:

[E.(n), B(r)] = — ‘b—’z o - ). (A.15)

Since the derivative of 8(r — r’) vanishes at r = r’ as a result of 8(r — r')
being even, it clearly appears in (A.15) that E | (r) and B(r) commute when they
are taken at the same point. It is this property which makes the symmetrization
of E | (r) X B(r) in the expressions for P, and J . useless.

Since E (r) can be reexpressed as a function of r, [see (A.8)], which
commutes with ¢, and a, Equations (A.14) and (A.15) remain valid if E | is
replaced by the total field E.

(ii) All the commutators (A.13) to (A.15) are evaluated from the Schrodinger
point of view. They remain valid in the Heisenberg picture if the two fields in

the commutator are taken at the same time.

(iii) In fact, the commutators (A.13) and (A.14) were derived directly in
Chapter II before the commutation relations (A.2). The relations (A.2) are then
a consequence of (A.13) and (A.14) (see §C.4, Chapter II). The reason for this
is that in the Lagrangian formulation of electrodynamics in the Coulomb
gauge, A(r) and —¢,E | (r) appear as canonically conjugate variables, with the
result that canonical quantization of the theory leads directly to (A.13) and
(A.14) [the fact that it is 8 (r — r) and not §, 8(r — r) which appears in
(A.14) is related to the transverse character of the fields (see §C.4.b, Chapter
ID)].

The Hamiltonian is a particularly important operator in this theory. We
recall its expression in the Coulomb gauge:

H=Y

1

[p1 — 4, A(rz)]z +

2m,
” 4, dp
* Zaz: Fout + 8meg 55 |1, — 1y |
. 1
+ Y ho a a; + 3) (A.16)

Physically, the operator (A.16) is associated with the total energy of the
system, the first line of (A.16) giving the kinetic energy of the particles, the
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second line their Coulomb interaction energy [e¢,, being the Coulomb
self-energy of particle a given by (B.36) of Chapter I], and the third line
the energy of the transverse field.

Remarks

(i) The expression (A.16) for the Hamiltonian in the Coulomb gauge, which
was postulated at the end of Chapter I, has its justification in the Lagrangian
and Hamiltonian approaches presented in Chapter II (see §C.3, Chapter II).
For those who have not read Chapter II, the fact that the Hamiltonian (A.16),
taking into account (A.1) and (A.2), leads to the quantized Maxwell-Lorentz
equations (as will be shown in Part B below) will be considered as an
a posteriori justification of (A.1), (A.2), and (A.16).

(ii) It will be useful for subsequent developments to give the expression for the
Hamiltonian H in the presence of external fields—that is, static or time-depen-
dent fields whose motion is imposed externally. Let A (r, ¢) and U,(r, t) be the
vector and scalar potentials describing such external fields (the Coulomb gauge
need not be used for A, and U,). We have shown in Complement Cy, that the
expression for H is then

1
H=Y 5[0 — ¢ AR) — 4, A, D] +

1 4, 4
+Y ot ) T+ 2. q, Ur, ) +
g Coul 8”‘901;/;“«"'/” gq (0

1
+3y hu)i<a,~+ a; + §>. (A.17)

We will show subsequently (see the remarks at the ends of §§B.2.4 and B.2.5)
that the Hamiltonian (A.17) with the commutation relations (A.1) and (A.2)
leads to “good” equations of motion for the particles and for the fields.

We complete this review of the various quantum operators by giving
the expression for the total momentum P,

P=>p,+) 7kaq' g (A.18)
and that for the total angular momentum J,
=21 X P+ Jan, (A.19)

where J,_,.. is given by (C.18) of Chapter I (with & and a* replaced by a

and a*).
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3. State Space

The state space & of the system is the tensor product of the state space

of the particles, &5, in whichr,,p,,... act, with the state space &, of the
radiation field, in which a,, a;,... act:
& =6pQ® 6. (A.20)

The space &, is itself the product of the state spaces &, of the various
oscillators i associated with the modes of the field:

=606, ®&® (A.2])

One possible orthonormal basis of &; is {|n,)}, where n, = 0,1,2,3, ...

labels the energy levels of oscillator i. If {|s)} is an orthonormal basis of
&, we can take in the total space & the following basis:

Us>lngylinyydnyh={lsinny,.n..>  (A.22)

and the most general state vector of & is a linear superposition of the
basis vectors (A.22).
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B—TIME EVOLUTION

1. The Schrédinger Picture

In this picture the various observables of the system particles + fields
are fixed, and it is the state vector |{/(z)) which evolves according to the
Schrédinger equation:

. d
i 1> = H|y()) (B.1)

where H is the global Hamiltonian given in (A.16).
If |¢(r)) is expanded in the orthonormal basis (A.22),

WO = Y o D singny . (B.2)
and if the expansion (B.2) is substituted in (B.1), one gets a linear system
of differential equations for the coefficients Conpm, . (D).

The Schrodinger point of view is convenient for introducing the transi-
tion amplitudes

Yy (U > (B.3)

where
Uty = e iHm (B.4)

is the evolution operator. Physically, (B.3) represents the probability
amplitude that the system starting from the initial state |, ) will end up in
the final state |{,) after a time interval ¢. These amplitudes allow one to
describe various manifestations of the interaction between matter and
radiation (absorption, emission or scattering of photons bv atoms, pho-
toionization, radiative corrections, etc.). One of the important objectives
of the theory will be to calculate these transition amplitudes, either by
perturbation theory or by some more complex approach. (*)

In the present chapter, which is devoted to more general considerations,
we will stress the advantage of the Heisenberg point of view, which is
more appropriate for comparisons between the classical and quantum
theories.

2. The Heisenberg Picture. The Quantized Maxwell-Lorentz Equations

In the Heisenberg picture, it is the state vector |{) of the global system
which remains fixed, whereas the observables G(t) of the system evolve
according to the Heisenberg equation

d 1
5 G0 = 5 [6(0), H)] (B.5)

(*) These problems are treated for example in Cohen-Tannoudji, Dupont-Roc, and
Grynberg (Chapters I and III).
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where H is the Hamiltonian (A.16) in which all of the operators are taken
at time 7.

a) THE HEISENBERG EQUATIONS FOR PARTICLES

The Heisenberg equation for r,,

. _ L LI

= mi (p. — 4, A(L,) (B.6)

X

is just the well-known relation between the mechanical momentum m y, of
particle a and its canonical momentum p,:

P, = m, vV, +q,A(r,) (B.7)

(v, = i, is the velocity of particle a). Equation (B.44) of Chapter I thus
appears here as an equation of motion.

For the following calculations, it will be useful to evaluate the commu-
tator between the two components v,, and v,, of v, (J, /= x., y, z):

1715[1‘1]., L.zl] = - qx[pazjs Al(rz)] - q:[Aj(rz)*pzl]
= ifiq,[¢;A\(r,) — (A[ry)]
= ih%zk: e Bilr,) - (B.8)

Consider now the Heisenberg equation for m v, ,

m,r,, = m

x Vaj x

f:%[ . H] (B.9)

and calculate the contributions of the three terms appearing in the
expression (A.16) for H. The first term of H (kinetic energy) gives, using
(B.8),

Ml 290 =
lh [szszl:mz Lal/2} -

2
m .
= Zi;i Zl: { val[txjv U] + [ij- [ A

4,
= “2‘; Z’: Eje U Bi(r,) + Bi(r) vy | (B.10)
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and can be considered as the j-axis component of the magnetic part of the
symmetrized Lorentz force,

%{vaxB(r1)~B(ra)xvﬂ}. (B.11)

The second term of H (Coulomb energy) gives

m, 1

i—h [Uzj’ VCoul] = i—h—[patj- VCoul] == ‘1_ VCoul (B 12)
aj

which is just the j-axis component of the longitudinal electric force

q,E,(r,). Finally, the third term of H (the energy of the transverse field)

gives

m(l

1
7 [Uu" Z hwi<ai+ a; + 5)} = iq, Z w;[Afr,).a" a;].  (B.13)

By using on one hand the commutator [a,, a; ;] = a; and on the other
hand the expansions (A.3) and (A.5) for E, and A, one can show that
(B.13) is nothing more than the component of the transverse electric force
q,E | (r,) on the j-axis.

By regrouping all the preceding results one gets finally

m,¥, = ¢, E(r) + 2y, x Bo,) — Br) x vl (B.19

where E=E, + E, is the total electric field. Equation (B.14) is the
quantum form of the Newton-Lorentz equation

Remark

In the presence of external fields, it is necessary to use the Hamiltonian (A.17).
Equation (B.6) then becomes

Mk, = mV, =P, — 4, Alr) = 4, ALr, 1) (B.15)

and contains the external vector potential A,. With this new expression for
m v, the calculation of the commutator (B.8) involves the curl of A + A, that

a‘a’

is to say, the total magnetic field

B, - B + B, (B.16)

which is the sum of the quantized magnetic field B and the external magnetic
field B,:

’"3[”1j~ vy = ihg, Z €1k B (r,). (B.17)
k

Additionally, since the new expression (B.15) for m y, contains a term explicitly
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dependent on time, —q,A,(r,, 1), the Heisenberg equation (B.9) for m_y, is
modified and becomes

v, m,
mov, = m, == + T [v,. H]

[~

3]

= = 4y ‘[ Ar,.n) + ?—;“[va]. (B.18)

)

-~

Finding the commutator of (B.18) is a similar procedure. Since it is necessary to
use (B.17) in place of (B.8), it is the total field B, which now appears in the
Lorentz magnetic force (B.11). The other new term which arises in this
calculation comes from the coupling of the charges with the external scalar
potential {the term X q.U,(r,, t) of (A.17)]. It is written

%[v,,qi Utr,. 0] = — ¢, VU(r,.,1). (B.19)
Regrouping (B.19) with the first term of (B.18), one gets

q,[ - LA~ VU, z)] = ¢.E(r.1) (B.20)

that is to say, the force due to the external electric field. Equations (B.12) and
(B.13) remain unchanged and give rise to the force due to the quantum electric
field E, g, E(r,, ), which is added to (B.20) to yield the total electric field

E=E+E,. (B.21)

Finally, by regrouping the preceding results, one gets the new Newton-Lorentz
equation

m ¥, = q,E/(r) + %’ [v, x B(r) — B(r) x v,] (B.22)

which now contains the total fields B, and E,.

b) THE HEISENBERG EQUATIONS FOR FIELDS

The same linear relationships exist between the classical transverse
fields and {«;, a*} on one hand and the quantum transverse fields and
{a,, a}} on the other. If we show that &, and a, obey similar equations,
we will have at the same time shown that the equations of motion of the
fields are the same in the classical and quantum theories. Instead of
writing the Heisenberg equations for E | | B, and A, it is therefore easier to
consider one such equation for a;:

.o
i, = = la, H] . (B.23)

As with m v.. we will now calculate the contributions of the three terms of

o
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H. The last term gives —iw,a,. The second commutes with a, and gives
zero. Finally, the first term gives

2 ! )
B D A B T L A
ih |42 Z2ih | * da  da

1

I . .
=Y Zi;i oA, g [v,e M + e My ] (B.29)

We have used [a,, f(a])] = df/da;, which follows from (A.2). If one
introduces the symmetrized current

jr) = %an[vz r—r) +8r—r)v,] (B.25)

one can then transform (B.24) into

i

—_— (B.26)
V2 & hw,;
where
= s d3re iker g - j(r) (B.27)
3 \/E

is the Fourier component of j on mode /. Finally, the equation of motion
for a, is written

i A
V2 & hw, /i

and has exactly the same form as the equation of motion for &, [Equation
(C.41) of Chapter I]. The argument given at the beginning of this subsec-
tion then shows that Maxwell equations remain valid between operators.

Finally, all the basic equations of classical electrodynamics can be
generalized into the quantum domain (provided however that one sym-
metrizes the products of noncommuting Hermitian operators such as the
Lorentz magnetic force or the charged-particle current).

a; +iw;a; =

(B.28)

Remarks

(i) In the presence of external fields, the evolution equation for a, keeps the
same form (B.28). The third line of (A.17) always gives —iw,q,, the contribu-
tion of the second is zero, and that of the first is the same as above. [It must be
noted however that the velocities v, appearing in (B.25) for the current are now
related to the momenta p, by Equation (B.15) and no longer by (B.7).] Actually,

the equation of motion of a, only concerns the evolution of the quantized
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transverse field. This is expected, since the evolution of A, and U, is assumed
to be externally imposed. Since the source term of (B.28) depends only on the
particle current, the external field can only influence the evolution of the
quantized transverse field through the current. More precisely, the presence of
the external field modifies the motion of the particles [see (B.22)], and thus the
current associated with them, and thus the field which they radiate.

(ii) In the absence of particles ( 4, = 0), the solution of Equation (B.28) is quite
simple:

a(t) = a0y e (B.29)

The expressions for the free fields in the Heisenberg picture are then gotten by
replacing, in the expansions (A.3), (A.4), and (A.5) for E, , B, and A, the
quantity a, by (B.29) and 4, by the adjoint expression. For example,

B ) = 316, [a(0) ¢, €™ 00— 07 @) g e ™0 (B30)

i

One thus gets an expansion of the free field in traveling plane waves whose
coefficients ¢,(0) and a4, (0) are now operators satisfying the commutation
relations (A.2). Starting from (B.30) and the analogous equation for B(r, 1),
one can find the commutators between components of the free fields taken at
two different space—time points r,¢ and r, ¢ (see Complement Cyy). In
particular, one finds that the commutators of the electric and magnetic fields
are always zero when r, z and r’, ¢" are separated by a spacelike interval. This
result means that two measurements of the fields at r,¢ and r’, ¢’ cannot
perturb each other when the two events at r, ¢ and r’, ¢’ cannot be connected by
a physical signal.

¢) THE ADVANTAGES OF THE HEISENBERG POINT OF VIEW

A first advantage of this point of view is that it allows one to discuss
easily the analogies and differences between the classical and quantum
theories. As seen above, this leads to analogous equations of motion, but
these equations now involve operators and not the classical variables.

A second advantage of the Heisenberg point of view is that it allows
one to define * two-time averages”, that is to say, mean values in the state
|¥) of the system (remember that |y} is time independent) of a product of
two operators F(¢) and G(t') taken at two different times ¢ and ¢":

CYIFO G Y > (B.31)

Important examples of two-time averages are the symmetric correlation
functions and the linear response functions. They describe respectively the
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dynamics of the fluctuations occurring in the system and the linear
response of the system to a small external perturbation. We will return
below (§C.3.c and Complement C ;) to the symmetric correlation func-
tions and the linear susceptibilities of the quantized free field (see also
Exercise 6, Chapter 1V).
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C—OBSERVABLES AND STATES OF THE QUANTIZED
FREE FIELD

To discuss the physical properties of a quantum system, it is necessary
to know the observables G associated with the various physical variables
of the system and at the same time the state vector |y ) (or the density
operator p) describing the state of the system at the time the measurement
is being effected. It is by using these two distinct mathematical quantities
G and |¢) (or G and p) that predictions can be made about the results of
measurements performed on that system.

For instance, if |¢) coincides with one of the eigenstates of G, the
result of the measurement of G is certain; it is the corresponding eigen-
value of G. If |{) is not an eigenstate of G, the result of the measurement
can a priori be any eigenvalue of G with well-defined probabilities, the
mean value of the results gotten from a large number of identical measure-
ments (repeated on the same state |¢)) being (¢|G|¢ ). If two physical
variables are not compatible, that is, if the corresponding observables F
and G do not commute, it is not possible to find a common basis of
eigenvectors for F and G. There is no state |y ) which is well adapted to
both F and G. One can seek a compromise in this case, for example by
looking for a state |¢) such that the mean values of F and G in this state
are equal to the corresponding classical values of these variables.

This general approach can be applied to the electromagnetic field and
will be followed in this section to study the important properties of the
quantized field. In order to concentrate the discussion on the field vari-
ables, we will consider only the free field, that is to say the field in the
absence of sources.

1. Review of Various Observables of the Free Field

a) ToTAL ENERGY AND TOTAL MOMENTUM OF THE FIELD

In the absence of particles, H and P reduce to H,,, and P, whose
expressions have been given above in (A.9) and (A.10). Note that these
variables are global variables in the sense that they are given as integrals
over all space (free space or quantization volume) of functions of the fields
E and B.

b) THE FIELDS AT A GIVEN POINT r OF SPACE

Unlike H,, . and P, these variables are local. The measurement of
the field at a point requires placing a test charge at that point. The
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expressions for E | (r) [which is equal to E(r) in the absence of particles,
since E | is then zero], B(r), and A(r) are given above by (A.3), (A.4), and
(A.5).

Let us examine the electric field more precisely and consider the
contribution of one mode to E(r). Rather than using the operators a and
a', one can introduce their linear combinations ap = (a + a*)/2 and
a, = (a — a’)/2i, analogous to the position x and momentum p of a
harmonic oscillator. It is easy to see that a, and a,, correspond to two
quadrature components of the electric field (see Exercise 6). One can then
use the analogy with the harmonic oscillator to establish results for the
quantum radiation field. For example, the Heisenberg relation for AxAp
here becomes Aa, Aa, > § and means that measurements of two quadra-
ture components of the field are not compatible. If one wishes to measure
one component with great precision, this will introduce an increase in the
uncertainty in the quadrature component. Another interesting result con-
cerns the distribution of possible values of each component a, and a,
when the mode is in the ground state (no photon in the mode). This
distribution is a Gaussian just like the distribution of possible values of x
and p in the ground state of a harmonic oscillator.

¢) OBSERVABLES CORRESPONDING TO PHOTOELECTRIC MEASUREMENTS

In the optical domain, one most often uses detectors based on the
photoelectric effect to make local field measurements. Schematically one
puts an atom in the radiation field at point r and observes the photoelec-
trons produced by photoionization of this atom. Such measurements are
destructive in the sense that the photons responsible for the photoelectric
signal disappear.

We will use below the results of photodetection theory to relate the
signals obtained to the local field observables (see the references at the end
of the chapter). These results will be useful for the physical discussions of
this chapter and Complement A ;.

1) Single Counting Signals

Suppose that a broad-band detector is placed at point r in a free
radiation field described by the state |{/). One can show that the probabil-
ity of observing a photoionization in this detector between times ¢ and
t + dt is proportional to w(r, 1) d¢, where

wilr, ) = Y [ET w0 - En 0 [y ) (€.

E()(r, t) and E* (r, ) are the positive- and negative-frequency compo-
nents of the free field (B.30), containing respectively only the destruction
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operators a, and the creation operators a':

E( + )(l'. [) = Z i@@u), a; 8,, ei(ki.rf w;t)

E7Nn 0 =[EX 0] = - Y i8, af e '™ o0 (C.2)
[For simplification we omit the index “free” and write a, and a/ for
a,;(0) and a;(0)]
The “single counting rate” wy is the mean value in the state |{) of the
field of the observable

Kr,t) = EC ) (r, 1) - EXN(r, 1) (C.3)

taken in the Heisenberg picture. I(r, 1) is a Hermitian operator arranged
in the normal order (that is, with all the destruction operators on the right
and all the creation operators on the left), which one can call the “light
intensity” at point r at time ¢.

Remark

It is also possible to give a semiclassical treatment of the photoelectric effect
where only the detector is quantized and not the field (see the references at the
end of the chapter). For the single counting rate one finds in place of (C.1)

wilr, 1) = ES e 1) - B ) = 1, 1) (C.4

cl

where E{;") and E{;’ are the positive- and negative-frequency components of
the classical electric field and where I, = |E{"’|* is the classical intensity.

i1) Double Counting Signals

Consider now two photodetectors at r and r’. The probability of
observing one photoionization at point r’ between ¢ and ¢’ + d¢’, and
another one at r between ¢ and ¢ + d¢ is found to be proportional to
wy(r, t; 1, ¢")dr dt’, where

e, 137, 1) =
= ¥ B, ) EC e 0 EC D ESEL ) [ (CL5)

with m, n = x, y, z. The “double counting rate” wy; is equal to the mean
value of the observable arranged in normal order:

Y Y ES Y EST( ) EC O, ) ECO(r, 1. (C.6)

m
Since E{7)(r, r) and E‘*)(r, r) do not commute, it is not possible to write
such an observable in the form I(r, ¢)I(r’, t), that is to say, as the product
of two light intensities at r, z and ', t'.
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Remark

The semiclassical expression for the double counting rate is
Wi ) = L 0 (e 1) (%))

For a fluctuating classical field it is necessary to take the average of (C.7) over
all possible realizations of the field. The double counting rate is then equal to
the correlation function of the light intensity.

2. Elementary Excitations of the Quantized Free Field. Photons

a) EIGENSTATES OF THE TOTAL ENERGY AND THE TOTAL MOMENTUM
Consider first of all the oscillator i (mode 7). The eigenvalues of a/a;
are the integers n;, = 0,1,2,...,

ai+ai|ni>:ni|ni> n,=0,12,.. (C.9)

and the eigenvectors |n,) obey the well-known relations

a’ |\n;>=/n+1|n+1)

a;ln; > =min—1>

a;10,> =0 (C.9)
(a’)"

'
n; !

|n > = [0: 5. (C.10)

Since a; a; commutes with a; a, the eigenstates of H,,,, and Py, are
the tensor products of the eigenstates |n,) of aa;:

Hpln, ..n..> = Z(ni +%> ho | ny...n...> (C.11.2)
Poln, on.>=Yn K n ..m.>. (C.11.b)

The ground state of the field corresponds to all n, equal to zero and is
denoted |0):

0> =10,...0;...>. (C.12)
From (C.10) it is clear that all the eigenstates |n, n,,...,n,...) can be
gotten by applying a certain number of creation operators to the ground
state |0):
_ (a;r)nl ‘ (ai+)n,-

T ~vﬁ~-|o>. (C.13)

Ay g )
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b) THE INTERPRETATION IN TERMS OF PHOTONS

With respect to the ground state |0), the state |n,...n,...) has an
energy 2;n hw; and a momentum ¥ n k. The situation appears as if this
state represented a set of n, particles with energy 4w, and momentum
hKky,... n, particles with energy hw;, and momentum Ak, .... These
particles are called phorons. They describe the elementary excitations of
the various modes of the quantized field.

The ground state, which has no photon (all », are zero), is called the
vacuum. From (C.9) it appears that a; creates a photon i whereas a,
destroys a photon i. The total number of photons is described by the
operator

N=>a'aq. (C.19)

Finally, since the field has been quantized with commutators, the
photons are bosons. Thus, the total number of photons i, n, can be
greater than 1.

12

Remarks

(i) The energies of the states have been evaluated with respect to the vacuum.
However, the absolute energy of the vacuum, equal to ¥, hw, /2, is infinite. We
return to this point below when we study vacuum fluctuations.

(ii) Instead of using the transverse plane-wave expansion, one can expand
the field in multipole waves (see Complement B;). In that case one gets,
after quantization, elementary excitations, or photons, characterized by well-
defined values of the energy [Aw], of the square of the angular momentum,
J* [J(J + 1)R?), of J. [Mh], and of the parity [+ or —].

(iii) A relativistic wave equation like the Maxwell equations, the Klein-Gordon
equation, or the Dirac equation has solutions in ¢'“" and e, which one can
interpret as solutions with positive or negative energies. After second quantiza-
tion of such a theory, the coefficients of the field expansion in the negative-
energy solutions become the destruction operators of a particle of negative
energy, which one reinterprets as the crearion operators of an antiparticle of
positive energy. The field operator appears then as a linear superposition of a
(the destruction operator of a particle) and b* (the creation operator of an
antiparticle). For the Maxwell field only a and a* arise. This is due to the fact
that the Maxwell field is real and the photon coincides with its antiparticle
(bt=a").

¢) SINGLE-PHOTON STATES. PROPAGATION

The creation operator ajf, acting on the vacuum |0), gives a state with
one photon k. Such states can be linearly superposed to give

) =2aal0). (C.15)
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One such linear combination is an eigenstate of the operator N given in
(C.14),

Ny =1¥> (C.16)

but not of H,,,,, and P, [since multiple values of k appear in (C.13)]. It
follows that in general | ) describes a single photon nonstationary state.

To discuss the propagation of such a state, consider a simple one-
dimensional model. All modes appearing in the expansion (C.15) are
assumed to have their wave vectors parallel to the Ox axis and the same

polarization, so that E(*)(r, ¢) will be denoted simply as E*)(x, ¢):

he ZV/Eak gitkx=on (C.17)

E(+)¥ 1) =
(x, 1) Te 4

The single counting rate w;(x, ) in the state (C.15) is then given by

2

he
2¢, L°

(C.18)

wilx, 1) =

) i(kx — wt)
Y ke e
k

It clearly appears in (C.18) that w(x, r) depends only on x — ct and thus
propagates without distortion at velocity c.

Remarks

(i) A measurement of P, on the field in the state (C.15) gives (for the
x-component) the value ik with probability |¢, | (We assume that (y|¢) =
Y, lc.|* = 1.) The quantity |¢,]?> can then be considered as a probability
distribution for P, .
(ii) The single counting rate w;(x,t) is proportional to the probability of
observing a photoelectron at point x. It is tempting to think of w(x, ¢) in the
one-photon subspace, as the probability for a photon to be at point x. This
would introduce the idea of a “position” for the photon. To confirm such an
interpretation, it would be necessary to show that it is possible to construct a
complete set of localized states for the photon, that is to say, a complete set of
states for which w;(x, t) is everywhere zero except at one point. In fact, this is
impossible owing to the transverse character of the field. Assume, for example,
that one wants to localize a photon with a polarization parallel to the z-axis.
The transverse nature of the field requires that one use only plane waves having
their wave vectors in the (x, y) plane, which implies that w;(r, t) is completely
delocalized along O:z. In fact, it is impossible to define a position operator for
the photon, as has already been indicated in §C.5 of Chapter 1.
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3. Some Properties of the Vacuum

a) QUALITATIVE DISCUSSION

For a real harmonic oscillator, it is well known that the fundamental
commutation relation [x, p] = ik prevents the simultaneous vanishing of
the potential energy (proportional to x?) and the kinetic energy (propor-
tional to p?). The lowest energy state results from a “compromise”
between these two energies, which vary oppositely as functions of the
width of the wave function. One understands then why the ground state
has an absolute energy which is not zero (*“ the zero-point energy”, hw/2),
and why in this state the variances Ax? and Ap? of x and p are not zero.

The same phenomenon arises for the quantized field. The fundamental
commutation relations (A.2) between a, and a; [see also (A.15)] prevent
simultaneous vanishing of the electric and magnetic energies. It follows
then that the ground state of the quantum field, that is, the vacuum |0),
has a nonzero absolute energy, and that the variances of E and B in this
state are nonzero. This is a purely quantum effect.

b) MEAN VALUES AND VARIANCES OF THE VACUUM FIELD

Starting with the expansion (A.3) for E in a, and 4, and with

;10> =0 <0|aja,.+|0>=5ij (C.19)
one sees that
COJE(M|0)=0 (C.20)
2 _ :2 ho;
CONBWP 10> = Y65 = Lo s (C.21)

and finally, by replacing the discrete sum with an integral [see (C.34) of
Chapter 1.

he ke
AEX(r) = 3 f k* dk . (C.22)
2e0m" ),
The variance of the electric field at a given point r is then, in the vacuum,
proportional to  (quantum effect) and diverges as k3, as the upper limit
k,, of the integral (C.22) tends to infinity. An analogous result can be
gotten for ¢B(r), which has in the vacuum the same mean value and the
same variance as E(r).

Thus the quantum theory of radiation predicts that even in the vacuum
there is at every point in space an electromagnetic field with zero mean
value and infinite variance.
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Remark

Rather than considering the fields at a point r, we can average the field over a
finite volume surrounding the point r and with linear dimension r. More
precisely, we introduce the mean field

Er = jd“ﬂf(p) E(r + p) (C.23)

where f(p) is a real function (Figure 1a), depending only on |e| and of width
7y, such that

jd"p,f'(p) =1. (C.24)
Using the expansion (A.3) for E, one then transforms (C.23) into
E(r) = iy 6o, a;9(k) & ¢*" 4 herm. conj. (C.25)
where g(k) is the Fourier transform of f(e):
g(k) = jd“ﬂ e? f(p) (C.26)
g(k) depends only on |k| and tends to zero when |k| > 1/, Additionally,

from (C.24) and (C.26)
g0y = 1. (C.27)

b /(p) } 9(k)

(b)

0 g

Figure 1. The shapes of the function f(p) defining the mean field and its
Fourier transform g(k).

The shape of g(k) is shown in Figure 1b. One sees then that averaging the field
over a finite volume of linear extent 7, about r is equivalent to introducing a
“cutoff function” g(k) in the mode expansion of the field. This cutoff sup-
presses the contributions of the modes with wave vectors greater than 1/r,. The
same calculation as above then gives

(OIEM|0> =0 (C.28)
w200 he [1 3 2 g
AE*(r) = e | K g(lk|)* dk . (C.29)
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The integral of (C.29) converges if g(|k|) tends sufficiently rapidly toward zero
when |k| — co. Thus, the variance of the mean field E in the vacuum can
remain finite.

¢} VACUUM FLUCTUATIONS

In the subsection above we have calculated the mean values of the
fields and of the squares of the fields at a given instant. To study the
dynamics of the vacuum field, it is necessary to further use the Heisenberg
point of view and to calculate the symmetric correlation functions

Coar;t +1,1)=

= %( 0|E (r,t + D E(r, 1) + E(r.)E(r,t +7)|0) (C.30)

where m, n = x, y, z.
By using the expansion (B.30) for the free field E(r, ¢) in the Heisenberg
picture, one finds (see Complement C ;)

he T
Cor;t+1,0)=26 | k|° e dk . (C.3D

mn 2
2egn” ),

The correlation function C,, is real and depends only on 7, because the
vacuum is a stationary state whose properties are invariant under time
translation. The magnitude of 7 in C,,,(7) is of the order of 1 /ck,, and is
thus quite small (recall that one should in principle let k,, go to infinity
unless one averages the field over a finite volume of dimension r,, which
amounts to taking k,, of the order of 1/r)). It appears then that the
vacuum fluctuations have a very short correlation time. It also appears
from (C.31) that C,,(7) is the Fourier transform of a spectral density
proportional to |w|®. In Complement C,; we will discuss more precisely
the shape of the variations of C,, () with r for short r (of the order of or
less than 1/ck,,) and for r long with respect to 1/ck,, [in which case
C,,. (1) decreases as 77°].

The presence of a field fluctuating very rapidly about zero in the
vacuum suggests interesting physical pictures for the interpretation of the
spontaneous emission of radiation by an excited atom and of radiative
corrections such as the Lamb shift. (*)

(*) See for example J. Dalibard, J. Dupont-Roc, and C. Cohen-Tannoudji, J. Physigue,
43,1617 (1982) and the references therein.
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4. Quasi-classical States

a) INTRODUCING THE QUASI-CLASSICAL STATES

Consider the classical free field. Following the results of Chapter I, the
state of this field is characterized by a set of normal variables { «,}. Once
the set {a,} is known, all the quantities relative to the field are known.
For example:

Hin ({0 }) Zhw ; (C.32)
Pl ({o}) th . (C.33)

Ecl( { % } T [) _ l.z (éow[ % € ei(k,.r*m,t) _ C.C) (C34)

and so on.

For the quantized free field, the situation is more complex. Since the
various observables of the field do not commute among themselves, it is
impossible to find common eigenstates for these variables with eigenvalues
equal to the values of the corresponding classical variables.

In this subsection, we try to find the quantum state |{a,}) which
reproduces in the best possible fashion the properties of the classical state
{a,}. The general idea is to seek a quantum state |{«, }) such that, for all
the important observables, the mean values of these observables in the
state |{a;}) coincide with the corresponding classical variables. More
precisely we wish to have

{ Q; } lHtrans

{a,}) = Eye = Hini({,}) (C.35)

(we have subtracted the vacuum energy E
taken with respect to the vacuum). Then

vac» Since all the energies are

<{“i} lplrans {ai}> P:rlans({ai}) (C36)
Lo B [{a}) =E ({o}in1) (C.37)

for all r and all ¢, with analogous equations for B and A.

b) CHARACTERIZATION OF THE QUASI-CLASSICAL STATES

If the expansions (A.9), (A.10), and (B.30) for H s, Pans. and E(r, )
in a, and a; are substituted in the left-hand side of (C.35), (C.36), and
(C.37) and compared with the expressions (C.32), (C.33), and (C.34) for
HS P& and E ({a});r, 1), one finds that the conditions (C.35) to

trans® trans>
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(C.37) are equivalent to

ot a |} =0 Vi (C.38)
ot ata|{o})=ofo Vi (C.39)

We then introduce the operator
by=a,— o 1 (C.40)
where 1 is the unit operator. Equations (C.38) and (C.39) can be written
Lo b b {a}>=0 Vi (C.41)
Lo bbb {m}>=0 Vi (C.42)

Equation (C.42) shows that the norm of b,|{a,}) is zero, so that the
solution of (C.41) and (C.42) is

bil{“i}>=0 (C.43)
that is to say, finally,
ail{“i}>:“i‘{“i}>- (C.44)
It follows that the state |{«;}) is a product
|{°‘i}>=|9‘1>|0‘2>~~~l“i>~~~ (C.45
with
ai|ai>=°‘i|“i>~ (C~46)

The quasi-classical state |{a;}), also called a coherent state, is thus the
tensor product of the eigenstates of the various annihilation operators «,
with eigenvalues «, which are precisely the corresponding classical normal
variables.

From (C.46) it follows that

Copla’ = of oy (C.47)

as well as
EVm {4} > =ES({o )i t) [ {oa}) (C.48)
Lo} B ) =ES({ o b in ) o )| (C.49

where E¢*)(r, 1) and E(7)(r, 1) are the positive- and negative-frequency
components of the free field in the Heisenberg picture, given in (C.2).
More generally, all the observables arranged in the normal order have a
mean value in the state |{a,}) equal to the value of the corresponding
classical variable in the classical state {«a,}.
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¢) SOME PROPERTIES OF THE QUASI-CLASSICAL STATES

We examine now several important properties of the states |{a,}) and
more specifically of the eigenstate |a,) of the operator a,. To simplify the
notation, we will omit the index i. If additional detail is required, the
reader is referred to the references at the end of the chapter.

By projecting (C.46) on the bra (rn — 1|, one gets the recurrence
relation

Jninlay=adln—1]ad (C.50)
from which one can get
oy =e P2y ). (C.51)
n=0

The probability () of having n photons in a quasi-classical state |a) is
then given by a Poisson distribution

$(n) = eI | = ', (C.52)
with mean
(ny=|ul (C.53)
and variance
Z=d(nd>=|al*. (C.54)

The orthonormalization and closure relations for the coherent states can
be deduced from (C.51):

[ (Blay|P=e o (C.55)
%Jd2a|a><a|:ﬂ (C.56)

where d%a = d Z(a) dIm(a).
Finally, it is possible to show that in the x-representation, a quasi-

classical state is represented by a Gaussian wave packet which oscillates
without deformation.

Remark

The quasi-classical states |a) form a basis (overcomplete) in which it is possible
to expand the operator density p of the mode. In many cases, p can be written
in the form

0 = [dzaP(ot,a*)loz)(otl (C.57)
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where P(a, a*) is a function of « and «* which is rea/ and normalized:
[dzx P(a, oa*) = 1 (C.58)

(this results from p = p* and Trp = 1). The function P(a, a*) is called the
P-representation of the density operator (see the references at the end of the
chapter as well as Exercise 5). The main interest in the P-representation is that
it leads to simple expressions for the mean values of operators arranged in
normal order, like (a*)"(a)'. Thus the use of (C.57) in

@y @)y = Tr{ pla*)"(a) | (C.59)
leads, taking account of (C.46) and (C.47), to
(@@’ y = [dza Pl a*) Tr{|a) Cafa™)"(a) }
= sza P(o o) Ca|(aty"(a) | o)
= fdza P(o, 2*) ()™ (2 . (C.60)

Through Equations (C.58) and (C.60), P(a, a*) appears as a probability
density giving the distribution of possible values of a and a*. Such an analogy
is however misleading. First of all, simple resulis like (C.60) can only be gotten
for operators arranged in normal order. They are not valid for ((a)(a*)™y.
Also, one can show that there are states p for which P(a, a*) can take on
negative values. For this reason P(a, a*) is occasionally called a “quasi-prob-
ability density”.

The P-representation allows a simple discussion of purely quantum effects.
A true probability density is actually a positive definite function. As a conse-
quence, some inequalities can be established. For some quantum states of the
field, the negative values taken by P(a, a*) can lead to violations of these
inequalities. Let us note finally that the master equation describing the damp-
ing of p under a relaxation process often takes the form of a Fokker—Planck
equation for P(a, a*).

d) THE TRANSLATION OPERATOR FOR g AND g*
Consider the operator T(a) defined by
T(x) = e " (C.61)
where « is a complex number. This operator is unitary, since
THo)=e "% = T Ya). (C.62)

A first interest in the operators T(a) and T*(«) is that they allow one to
relate the coherent state |a) to the vacuum |0):
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o) =T%(2)|0) (C.63.a)
10> =T(x)|a). (C.63.b)

To prove (C.63.a) it suffices to use the identity
4 B .. %[A,B]

et™8 = etefe (C.64)

valid if 4 and B commute with [4, B]. By taking 4 = aa* and B =
—a*a, and therefore [4, B] = — |a|?[a*, a] = |a|?, which indeed com-
mutes with a and a*, we can transform (C.62) into

TH(a) = e™ g Mg 42, (C.65)

We then let (C.65) act on the vacuum after having expanded the first two
exponentials of (C.65) in power series. By using a|0) = 0 and
(a*)"|0y = yn! [n) we again get the expansion (C.51), which then proves
(C.63).
Another interest of the unitary transformation T is that it leads to very
simple results for the transforms of @ and a*:
T(x)aT (2) =a + « (C.66.2)

T(ax)yat T (%) = a* + o*. (C.66.b)
To prove (C.66.2), one starts from
aT "(2) = T () a + [a T *(2)] (C.67)

and uses (C.65) as well as [q, f(a¥)] = df/da* to calculate the commu-
tator of (C.67). We get

aT (o) = TH(0) a + 2T *(a). (C.69)

It suffices then to multiply both sides of (C.68) on the left by T and to use
TT*=1 to get (C.66.a). In what follows we will often use the equalities
(C.66), which show that T is a translation operator for a and a*.
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D—THE HAMILTONIAN FOR THE INTERACTION
BETWEEN PARTICLES AND FIELDS

1. Particle Hamiltonian, Radiation Field Hamiltonian,
Interaction Hamiltonian

For what follows, it is useful to separate the Hamiltonian of the global
system into three parts,

H=H, + Hy + H, (D.1)

where H, depends only on the variables r, and p, of the particles (the
particle Hamiltonian), H,, depends only on the variables a, and a;} of the
field (the radiation field Hamiltonian), and H, depends simultaneously on
Te Pos a;, and a; (the interaction Hamiltonian). Starting with (A.16) for
H, one gets

p;
Hp = 2 5=+ Veou (D.2)
1
Hp=H,. = ;hw,(af a;, + i) (D.3)
H,=H, + H,, (D.4)

where H;, is linear with respect to the fields:

Hy=-YEy aq,). (D.5)

=~ 1,

[we have used the transversality of A in the Coulomb gauge, which implies
P, - A(r,) = A(r,) - p)], and H 1> quadratic:

2
Hpy = ¥ 5 (AW (D.6)

Thus far, we have only considered charged particles without internal
degrees of freedom. It is possible to remove this restriction and to add to
the particle observables r, and p, the spin operators S.. Because of the
magnetic moment associated with such a spin, that is,

4,

s _
M. =y, 2m,

S, (D.7)

where g is the Lande factor of particle a, a new term must be added
to H,,

HYy = — ¥ M- Bqr,) (D.8)

X

representing the coupling of the magnetic spin moments of the various
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particles with the radiation magnetic field B evaluated at the points where
the particles are located.

Remarks

(i) In the presence of external fields, it is necessary on one hand to start with
the expression (A.17) for H and on the other to add the coupling of the spin
magnetic moments with the external magnetic field. Since A (r, t), U,(r, 1), and
B.(r, t) are classical variables with a prescribed time dependence, the operators
gotten by replacing r with the operator r, in these variables are atomic
operators. One then gets for H, and H, the following new expressions:

Hp = L2 2m, + Vegu + 2.0, Udr,. ) = I M- B,y (D.9)

Ed

where
Pi = Py — da AT, 1) (D.10)
H,——-H“ +Hf1 +H12 (Dll)
with
: 4 e
Hy = — Y =05 Ar) (D.12)

H7 and H,, are given by the same expressions as in (D.8) and (D.6).

(ii) All of the spin-dependent terms introduced in this section have been
introduced heuristically. For electrons they can be justified by examining the
nonrelativistic limit of the Dirac equation (see also Complement By, ). One then
finds that the g-factor for an electron is equal to 2.

2. Orders of Magnitude of the Various Interaction Terms for Systems of
Bound Particles

Consider first of all the ratio H,,/H,,. The orders of magnitude of 4
and p are taken equal to their root mean square values in the state
considered:

H, q¢*A4*m qapm Hy,
‘I-{—-N— Aoim = —3 ~— (D.13)
In qAp peim H,
For low-intensity radiation, the ratio f,,/H, is small, which implies that
H,,/H,, is also small. On the other hand, at very high intensity, where the
incident radiation field becomes of the order of the atomic field, H/, can
become of the same order as or larger than H,.

Note however that in certain scattering processes such as Rayleigh,
Thomson, or Compton scattering, H;, can arise in the first-order pertur-
bation theory (since a single matrix element of H,, is sufficient to describe
the two-photon process corresponding to the destruction of the incident
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photon and the creation of the scattered photon), whereas H,, only plays
a role in second order (the matrix elements of H,, correspond to one-pho-
ton processes, and two of them are necessary to describe a scattering
process). Even if H, is much smaller than H,,, the contribution of H,, in
first order can be of the same order of magnitude as that of H,, in second
order or even greater.

Remark

For a free particle or a weakly bound particle, H,, (more precisely, the
diagonal matrix elements of H,,) can be interpreted as being the vibrational
kinetic energy of the particle in the radiation field. For a field of frequency w,
we have 4 = E/w, and

qZ AZ qZ EZ

2m T 2mw?’

H,, ~ (D.14)
One recognizes in (D.14) the kinetic energy of a particle vibrating in a field E
of frequency « with an amplitude gE/mw? and a velocity gE/mw. Note that
such a picture remains valid when the particle interacts with the vacuum field.
It is necessary in that case to replace E by &, and H,, then represents the
vibrational kinetic energy of the particle in the vacuum fluctuations.

Consider now the ratio H},/H,,. By using (D.7), (D.8), and the fact
that B ~ kA4 (since B = V X A), one gets

H? hB kA Rk
M ghBjim k4 _ K (D.15)
Hy  gqdAp/m  pA p

—that is, the ratio between the momenta Ak of the photon and p of the
particle. For low-energy photons and a bound electron (for example, in
the optical or microwave domains), such a ratio is very small compared
to 1.

3. Selection Rules

In the absence of external fields (or in the presence of external fields
invariant under spatial translation), one can show, starting with the
commutation relations (A.1) and (A.2), that

[P, H] = 0 = [P, H,] = [P, Hy] = [P, H}] (D.16)

where P is the total momentum given in (A.18) (see Exercise 3). This result
can be understood physically if one notes that P is the infinitesimal
generator of the spatial translations of the global system field + particles.
The fact that an operator commutes with P is a consequence of the
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invariance of the corresponding physical variable under a translation of
the global system. Thus the velocity of each particle does not change
under a translation, so that the total kinetic energy {first line of (A.16)]
remains unchanged. Likewise, a global translation does not change the
distances between particles, and thus their Coulomb energy [second line of
(A.16)] remains unchanged, as does the integral over all space of E2 + ¢?B?
[third line of (A.16)]. Finally, to understand why H, commutes with P, it
suffices to note that A(r,) and B(r,) do not change when one translates by
the same amount the fields A and B and the point r, where these fields are
evaluated.

It follows from (D.16) that the total momentum is, as in the classical
theory, a constant of the motion in the Heisenberg picture:

d
L PO =0. (D.17)

Another consequence of (D.16) is that H, has nonzero matrix elements
only between eigenstates of H, + H, having the same total momentum.
(Since P commutes with H, + Hy, one can use a basis of eigenvectors
common to P and H, + H,.) Such a selection rule implies the conserva-
tion of the total momentum during the absorption or emission of photons
by a system of particles. Combined with the conservation of energy, which
arises when one solves the Schrédinger equation over sufficiently long
times, the conservation of the total momentum allows one to explain
important physical effects such as the Doppler effect and the recoil shift.
One could in the same way show that the total angular momentum
given in (A.19) commutes with /, Hp,, Hg, and H, in the absence of
external fields or in the presence of external fields invariant under rota-
tion. One consequence of this result is that H, has nonzero matrix
elements only between eigenstates of Hp + H, having the same total
angular momentum (conservation of angular momentum during the ab-
sorption or emission of photons by systems of charged particles).

4. Introduction of a Cutoff (*)

The Hamiltonians (A.16) and (A.17) studied in this chapter are only
valid for slow (nonrelativistic) particles. They do not correctly describe the
interaction of such particles with the “relativistic modes” of the field, that
is, modes for which hw > mc?, since such interactions would impart high

(*) An analogous cutoff has already been introduced in §C.5.d of Chapter II for the
standard interaction Lagrangian. For the reader who has not read Chapter 11, we follow an

analogous path here, but work directly with the interaction Hamiltonian without reference to
the Lagrangian.



n1L.D.4 The Interaction Hamiltonian 201

velocities to the particles or even create new particles as in electron-
positron pair production.

Now, the mode expansion of the fields A and B appearing in the
interaction Hamiltonian examined above contains arbitrarily high-
frequency modes. Rather than retaining the coupling terms with the
relativistic modes which are certainly inexact, we prefer here to eliminate
them from the interaction Hamiltonian. This is accomplished by introduc-
ing a cutoff in all the field expansions appearing in H,. More precisely, all
the summations on k, are limited to

Lk, | = k; < k, (D.18)
with
hick, = ho, < m, ¢* (D.19)

The cutoff frequency w, is chosen large with respect to the characteristic
frequencies w, of the particle motion:

W, < o, <m, ch (D.20)

so as to keep in H, a sufficiently large spectral interval to correctly
describe the important electromagnetic interactions of the particles, in
particular the resonant absorptions or emissions of photons. In fact, with
the cutoff (D.18) we abandon for the time being the description of the
effect on the particles of “virtual” emissions and reabsorptions of high-
frequency photons.

At this point in the discussion, it is convenient to recall that by
reexpressing the longitudinal field as a function of the coordinates of the
particles, r_, we have in fact included in the Hamiltonian of the particles a
part of the electromagnetic interactions of the particles [the Coulomb
interaction term V., of (A.16)]. To be consistent with the above, we must
also introduce the same cutoff in V,,. For this, we return to the
calculation of V., in reciprocal space, that is to say to Equation (B.35)
of Chapter 1, giving Vi, in the form of an integral on k, and we
introduce an upper limit k_ in this integral. The Coulomb self-energy of
particle a, €2, becomes finite and equal to

y gz k.

&, = .
Coul 4 7[2 80 (D21)

One gets in fact the Coulomb energy of a charge ¢, distributed over a
volume of linear extent 1/k_, which is not surprising, since a cutoff at k_
is equivalent to a spatial average on a volume k.? (see the remark in
§C.3.h above). As to the Coulomb interaction term between pairs of
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particles, it remains practically unchanged if 1/k_ is small compared to
the distances between particles, which we assume to be the case here.

We illustrate the previous discussion on the simplest atomic system,
the hydrogen atom. Figure 2, which is not to scale, gives several
important characteristic energies #Aw and the corresponding wavelengths

A=c/w=1/k.

2 2

0 o me ame mc ho
I | 1 } S
T J T T g
* 7l o = aq 7. = dag 7 =17k

Figure 2. Various energies and characteristic wavelengths for the hydrogen atom.
(Not to scale.)

A first important energy is the rest energy, mc?, of the electron. From
(D.19), the cutoff energy /w, should be to the left of mc® The wavelength
corresponding to mc? is the Compton wavelength X, smaller than the
Bohr radius a, by a factor & = 33; (« is the fine structure constant). For a
cutoff energy hw, of the order of mec?, the charges are distributed over a
volume of linear extent 1/k, = X, small with respect to the mean
distance a, between the two charges, and it is therefore legitimate to
neglect the modifications of the Coulomb interaction energy between the
electron and the proton.

The characteristic atomic energies, denoted hw, above, are here of the
order of the ionization energy, that is, of the order of a’mc?. Such an
energy is smaller than mc? by at least four orders of magnitude, and one
thus has no difficulty in finding a cutoff frequency w, satisfying (D.20).

Finally, since the Bohr radius a, is equal to A /a, a wavelength of the
order of a, corresponds to an energy hw of the order of amc?, much
smaller than mc? but also much larger than a’mc?. The interval 0 to amc?
of Figure 2, which is very large compared to the typical atomic energy
a’mc?, then corresponds to wavelengths large with respect to atomic
dimensions. If one is interested only in the interaction of the hydrogen
atom with photons of energy falling within this interval, it is possible to
do the “long-wavelength approximation”, which consists of neglecting the
spatial variation of the electromagnetic field on the length scale of the
atomic system (*) The consequences of such an approximation on the
Hamiltonian of one or many localized systems of charges are treated in
Complement A .

(*) Of course, there are physical effects, such as the existence of quadrupole transitions,
which are related to the first-order corrections to the long-wavelength approximation.
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COMPLEMENT A

THE ANALYSIS OF INTERFERENCE PHENOMENA IN THE
QUANTUM THEORY OF RADIATION

The wave aspect of light is seen experimentally through the ability of
light to give rise to interference. A second equally essential aspect, the
particle aspect, is observed through the discrete character of energy and
momentum exchanges between matter and radiation.

It is indeed for light that the idea of wave—particle duality was first
introduced by Einstein in 1909 and subsequently extended to all physical
objects. It is therefore not surprising that the majority of textbooks on
quantum physics begin with a discussion of the inseparability of the wave
and particle aspects of light in order to introduce subsequently the simple
idea that these two aspects can be integrated into a quantum description
of phenomena where ““the wave allows one to calculate the probability of
finding the particle”.

Although it is appealing to refer to this well-known example of light,
such a discussion presents the drawback of suggesting (in spite of warn-
ings) the false idea that the Maxwell waves are the wave functions of the
photon. It is unfortunate that the interference phenomena most familiar to
physicists occur for a system, light, for which there is no nonrelativistic
approximation: one can introduce nonrelativistic wave functions (r) for
a slow electron, but not for a photon, which is fundamentally relativistic.

It 1s therefore worthwhile to reconsider here the analysis of interference
phenomena and wave-particle duality in the general framework of the
quantum theory of radiation which has been established in Chapter III.
We now have at our disposal all of the elements allowing a thorough
discussion of several problems concerning interference phenomena. Can
one construct states [ ) of the quantum field such that local signals, like
the photoelectric detection signal w(r, ¢), vary sinusoidally as a function
of r with fixed 7 (or as a function of ¢ with fixed r)? Can one observe
interference fringes on the double counting signal wy;? Can one observe
fringes with two independent light beams? What happens if one has only a
single photon in the field? Since the Maxwell wave is not the photon wave
function, what are the quantities which interfere?

We begin (§A;.1) by establishing the simple model used in this
complement to discuss interference. We subsequently analyze the interfer-
ence phenomena observable in single (§A ;;.2) and double (§A ;.3) count-
ing experiments. We can then interpret the results obtained in terms of
interferences between transition amplitudes (§A ;. 4) and we conclude by
summarizing how the quantum theory of radiation describes the wave-par-
ticle duality (§8A 1.5).
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1. A Simple Model

In order to simplify the calculations, we assume that the free field has
been prepared in a state where only two modes, 1 and 2, contain photons,
all the other modes i # 1,2 being empty:

VD> =1vn>® [] 10,5, (M

i#1.,2

Such a situation can be realized by reflecting a parallel beam of light from
two plane mirrors with a small angle between them (Fresnel mirrors) or by
using two independent laser beams. The two modes 1 and 2 are assumed
to have the same polarization, so that we may ignore the vector character
of the field in the following.

The most general form of the state vector |{,,) appearing in (1) is a
linear superposition of basis states |n;, n,) relative to the set of modes 1
and 2:

Wi, = ZCn,nzinl’n2>' 2

nyn,

It can happen that |, can be factored (particularly when one uses two
independent laser sources) as

W22 =1y > 1>, 3

A quasi-classical state is a special case of (3) (see §C.4 of this chapter):
[ iD=l >lay). (4)
It will also be useful to consider the single-photon state

20 = 115,00 + ¢ 10, 1,5 (3)

in which the photon has a probability amplitude ¢, to be in mode 1 and ¢,
to be in mode 2.

Remark

The state of the field is described in (1) by a state vector (pure state). More
generally, one will rather use a density operator (a statistical mixture of states)

p=plL2)® n (|0i><0i’)‘ (6)

i#1.2



206 Quantum Electrodynamics in the Coulomb Gauge A2

If p(1,2) has a P-representation (see the remark at the end of §C.4.c of this
chapter), one has

p(1,2) = [dzoc1 d2a, Py, ;) |2y, oy > %y, %y 0]

where |a;, @, ) is the quasi-classical state (4) and where P(ay, a;) [a simplified
notation for P(ay, &, a,, a¥)] is a quasi-probability density, real and normal-
ized but not necessarily positive. The field state appears then as a “statistical
mixture” of quasi-classical states with a “weighting function” P(ey, a,) not
necessarily positive.

The free field being in the state (1) [or (6)], we now assume that we
place a photodetector at r. How does the single counting rate wy(r, 1) (see
§C.1.c of this chapter) vary as a function of r for ¢ fixed (or as a function
of ¢ for r fixed)? We can also set two photodetectors, one at r and one at
v, and study the correlations between their signals. More precisely, how
does the double counting rate wy(r, £;¥’, t') (defined in §C.1.c above) vary
as a function of r — 1 for t = ¢’ (or as a function of ¢ — ¢’ for r = r')?

Since w, and wy; are the mean values of products of operator arranged
in the normal order [see Equations (C.1) and (C.5) above], and since all
modes i # 1,2 are empty, the contributions of the modes i # 1,2 in the
expansions (in a, and a;") of the field operators E¢*? and E~) appearing
in w; and wy; vanish. This occurs because the operators a; with i # 1,2
appearing in E*) give zero when they act on [0,). The situation is similar
for the operators a; appearing in E'~’ and acting on (0,|. Thus, in all the
following calculations it is sufficient to keep only modes 1 and 2 in the
expansions of E‘*) and E{7), and to write

E(+)(l', I):EiJr}(l', l‘)+Eé+)(l', [) — (9@1 a, ei(kl.r*mn‘) + ézz a, ei(kz.r—wzz) (8)

where, using (B.30) and (A.6),

how 1/2 ho 1/2
& =i : & =i :
' 1[2 &g LS:' , : 1[2 o LJ ©

2. Interference Phenomena Observable with Single Photodetection Signals

a) THE GENERAL CASE
By substituting (8) and the adjoint expression for E¢7) in the expres-
sion for w, one gets
wy = Yy, |(E;-) + Eéi)) (Eiﬂ + EEH) l Wi =
=YL ETE Wy > + (il ES ES) 1, ) +
YL TETEY > + (Y TES EV [, > (10)
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which can also be written
we ) =16, P (Y, laf ap > + 122+

+2RebXE, (W lay ay [y, )
X ei[(k;*kl).r*(wszl)t] (11)

If {Y1,]a; a,ly,,) is nonzero, it appears from (11) that the single counting
signal has a sinusoidal dependence on r for fixed ¢, so that an interference
phenomenon can be observed.

b) QUASI-CLASSICAL STATES

Assume that | ,) is a quasi-classical state (4). Since |aj, a,) is an
eigenket of E{*)(r,t) and E{"'(r,t) with eigenvalues equal to
E{P{a)ir 1) and E{Y({a,};1, 1), and since {aa,] is the eigenbra of
the adjoint operators with the conjugate eigenvalues [see (8) and the
equations (C.48) and (C.49) above], (11) becomes

wr, 1) = | Eff( o bin )+ ESQ({ oy }sm 1) |2' (12)

For a quasi-classical state, w(r, t) thus appears as the square of the
modulus of the superposition of two classical Maxwell waves. In this
particular case, it is possible to argue in terms of classical electromagnetic
waves and to make them interfere to calculate the probability that the
photon manifests its presence at r, .

¢) FACTORED STATES

Assume now that |§,) is a factored state (3) (as is the case with two
independent laser beams). The general expression (11) then becomes

wie 1) =18 Py laf ap |y, > +1=22+
+2RedFE g lal [y >y lay iy, > x
X ei[(kz—kl)-rf(wz—wm]_ (13)

The interference fringes exist only if (¥,|a;|y;) and (¥y,la,|y,) are
simultaneously nonzero, that is, if the mean values of the fields (E,) and
(E,) are both nonzero.

In particular, if

[y, > =10 >lny >, (14)

that is, if the number of photons in each mode has a well-defined value,
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then there are no fringes, since (n,|a,|n,) = (n,|a,|n,) = 0. A state |n)
is in some way the quantum analogue of a single-mode classical field of
well-defined energy but with a random phase equally distributed from 0 to
2. Since the relative phases of the fields of the two beams are not well
defined, interference cannot be observed.

The foregoing discussion shows that it is in principle possible to
observe interference fringes out of w; with two independent lasers. Actu-
ally, at a given instant, the phases of the fields of the two lasers have
well-defined values. However, in practice, these phases evolve indepen-
dently as a result of noise in the atomic amplifiers. After a time interval of
the order of 7, the phase diffusion time, the relative phase between the
two lasers has lost any memory of its initial value (*). To observe the
fringes it is then necessary that the observation time be short with respect
to 7, in order to keep a well-defined phase and to prevent the washing out
of the fringes.

Note that in general

<‘//1la1+a1ll/’1>7é<‘//1[a1+|‘//1><‘//1la1|‘//1> (15)
so that
w0y # [ CE ) + CE ) |7 (16)

The single counting rate cannot then be thought of as arising from the
interference between two mean fields { E;) and (E,).

d) SINGLE-PHOTON STATES

Consider the single-photon state (5). The action of E{*(r, r) on such a
state gives

E{*)(r, DIy, > =cé; glfker= ol [0,,0,>. (17

Destroying a photon in a state which contains only one photon gives the
vacuum. An analogous expression can be gotten for E{*)(r, t), so that
finally

Wl(r, [) — {C] 61 ei[kl.r—wlt] + (,2 (gz ei[kz.rfw;,t] '2 . (]8)

(*) In the Fresnel mirror experiment, the two beams which interfere are gotten from the
same initial beam by wavefront division. The relative phase of the two beams then remains
fixed even if the phase of the initial beam fluctuates. This explains why it is so much easier to
observe fringes in this case.
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It appears then that it is quite possible to observe interference with a
quantized field which contains only one photon, provided that this photon
has a nonzero amplitude to be in two different modes (in practice the
experiment should be repeated several times with the same initial condi-
tions, since each detection destroys the photon).

Remarks

(i) For a single-photon state (5), one can show that

CYLTE Y0 = dn B Y, ) =0. (19)

It follows that the wave ¢ &e'®™ "~} appearing in (18) is not the mean

electric field in mode 1, which is zero [this is also true for the other term in
(18)]. The two waves which interfere in (18) are not related to mean fields.

(i) Interference fringes would not arise in a state which was a statistical
mixture of the states [1;,0,) and [0,,1,) with weights |¢,|*> and |c,|*. The phase
relationship between the two states appearing in the expansion (5) is essential
for the appearance of fringes (this phase is fixed by the argument of the
complex number cf*¢;).

3. Interference Phenomena Observable with Double
Photodetection Signals.

If one replaces the four operators E*’) appearing in the expression
for wy by E{* 4+ E{*) one gets 2* =16 terms with various
sinusoidal dependences on the variables (r, ), (', t'), (r + ', ¢ + ¢'), and
(r — v, 1 — ). It thus appears that interference phenomena can quite
generally be observed with double counting signals. We now look at
several cases in more detail.

a) QUASI-CLASSICAL STATES

Starting from (4), (8) and Equations (C.48) (C.49) above, one gets for
such states

wy = L({ay, o, ), DN AT 5 (20)

where 1 ({ &y, };11) is the classical intensity

L 2y, 2y )5, t) = 'El(:l)({ oy bart) + Eég)({ oy pin i) |2- (21)

In this particular case, wy; is the product of two classical intensities in
r,t and r, ¢’. It appears then that when the field is in a quasi-classical
state, the results of the quantum theory of radiation coincide with those of
semiclassical theories (see the remark at the end of §C.1.c).
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b) SINGLE-PHOTON STATES

For such states one finds that

wylr, ;Y1) =0 V0, 1. (22)

The first of the two operators E‘*) appearing in the expression for wy,
gives the vacuum [0;, 0, when it acts on a single-photon state. The second
operator E ) acting on the vacuum, then gives zero. This result expresses
the fact that, physically, it is impossible to detect two photons in a state
containing only one.

Whereas it is possible to observe a nonzero single counting signal in the
state (5) (see §A ;;.2.d above), the double counting signal wy; is identically
zero for all values of r, ¢ and v, ¢'. Such a situation can never arise with a
classical field. It is impossible to find a classical field E, such that w{' # 0
and wij=0for all r,t and all ¥, 1.

We will give another example of a typical quantum situation. In the
experiment shown in Figure 1, a single photon emitted by a single initially
excited atom passes a half-transmitting mirror, and the signals registered
by the photomultipliers A and B symmetrically placed with respect to the
mirror are analyzed. The quantum theory predicts that one can observe a
photoelectron at A or B but never at A and B. A semiclassical theory, in
contrast, predicts possible coincidences between A and B, since the two
photodetectors are simultaneously subjected to two wave packets resulting
from the division of the initial wave packet into two packets by the
half-transmitting mirror.

B
f
|
|
]

s = = — — S

Figure 1. The scheme for a double counting experiment with a single photon.

Remarks

(i) An experiment closely related to that shown in Figure 1 has been done on
the fluorescence light emitted by a very weak atomic beam excited by a
resonant laser source (see the references at the end of the complement). Rather
than having a single photon emitted by a single atom, one has a series of
photons emitted by a single atom which is reexcited by a laser source after each
emission. One can then observe at A and B a nonzero double counting rate.
Since the atom can only emit a single photon at a time and since some time
interval separates successive emissions, one finds that wy; is zero for 1 = ¢+’ and
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is an increasing function of |t — ¢| near ¢ — t" = 0 (recall that A and B are
symmetric with respect to the half-transmitting mirror of Figure 1, so that we
can set r = ' in wy). Such an “antibunching” of photoelectrons is a typical
quantum effect, since one can show that it violates a semiclassical inequality
predicting that w{}, for r = r, will be a nonincreasing function of |t — ¢'].

(ii) At this stage of the discussion, it is useful to point out how the semiclassi-
cal and quantum calculations can lead to different predictions. Assume initially
that the density operator p,, of the field allows a P-representation (see remark
in §A ;.1 above). By substituting (7) for p,, in the expressions for w; and wy,
one finds that these quantities are given by an “average” of the results (12) and
(20) found above for the semiclassical states ja;,a,) “weighted” by the
function P(ea;,a,) (which one should recall is real and normalized, since
p12 = pi2 and Trp;, = 1):

wir, 1) = J‘[dzal d’a, P(oy, o) L({ a2, i1, 1) (23)

wy(nr ') = [[dzal d?a, P(a,, @) x
x Ig({ o 0 bim o) Doy, o 351, 07). (24)

If the function P(q;, a,) is positive, the signals (23) and (24) are identical with
those given by a semiclassical theory (see §C.1.¢) for a statistical mixture of
semiclassical states {a,;, a, } with the true weights P(a,, a,). There is then no
difference between the quantum and semiclassical theories. The typically quan-
tum effects arise when P(q,, a,) does not exist or takes on negative values. The
signals (23) and (24) can then violate the semiclassical inequalities derived from
the positive definite character of the classical density P,{a,, a,). One can then
say in conclusion that the ensemble of quantum states of the radiation field is
much larger than the ensemble of statistical mixtures of classical states. It
follows in particular that it is not possible to interpret all the observable optical
interference phenomena in terms of the superposition of classical Maxwell
waves or of statistical mixtures of such superpositions.

¢) Two-PHOTON STATES

We consider here a very simple example of a two-photon state
a2 =11 211,5 (25)

by taking a state with one photon in mode 1 and one photon in mode 2.
By substituting (25) in the expressions for w; and w; one gets, using

8,

wir ) =16, 12 +16, 17, (26)
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wa(R 150, 1) = 216, 7| &, | %
x {1 + Relamkarmrm=@=ont=mly — (37)

It appears then that it is possible to observe interference effects on the
double counting signals [associated with the last term of (27)] under
conditions where they are not observable on single counting signals. The
absence of interference terms in (26) is due to the fact mentioned above,
that in a state like (25), where the number of photons in each mode is well
defined, the mean fields ( E;) and (E,) in each mode are zero (random
phases). Detecting a photoelectron is equally probable everywhere: ac-
cording to (26), wy(r, t) is independent of r. In contrast, once a photoelec-
tron is detected at a point r/, the probability of detecting a second one
immediately after at another point r depends on r — r’. The detections of
the two photons are not independent and give rise to an interference
phenomenon. It is this that (27) illustrates.

The double counting signal wy; is also very useful when the phases of
the fields in the two modes fluctuate independently with a characteristic
diffusion time 7, (as with two independent lasers). We have seen above
(§A1.2.c) that it is possible in that case to observe fringes with w,
provided that the observation time is short with respect to 7,. However,
the signal accumulated during such a period is generally quite weak, with
the result that it is necessary to rerun the experiment many times. One
encounters the difficulty then that, from one experiment to the next, it is
not easy to control the relative phase between the two lasers. A signal like
wy; which contains terms as in (27) independent of the phases of the two
beams is much more suitable, since it can be accumulated over many
experiments. This explains why interference phenomena between two
independent lasers have been first observed experimentally, not from w,
but from double and even multiple counting experiments (see the refer-
ences at the end of this complement).

Another interesting example is that of observing the radiation coming
from a star. The signal w; is washed out by the phase fluctuations
introduced by the atmosphere (*), whereas wy; contains terms independent
of these phase fluctuations. The measurement of the variations of wy; with
Ir — r'| allows the determination of the apparent diameter of the star.

(*) In speckle interferometry, the observation time is short compared to the correlation
time of the phase fluctuations, and it is possible then to extract the information of interest
from wy.
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4. Physical Interpretation in Terms of Interference
between Transition Amplitudes

In §A ;.2 above, we have mentioned several times that w, does not
appear in general as the modulus squared of the sum of two classical
waves. One can then ask what are the entities which in the general case
interfere in wy.

To see this we insert the closure relation

;llﬂj»><lﬂfl=41 (28)

for a complete orthonormal set {|y/,)} of states of the field between the
two operators E‘") and E*) appearing in the expression for w;. This
yields

wi(r 1) = ; CYTET w0 [y, > [EFN 1) [y )
=;|<lﬁ,~fE”’(r~f)|lﬁ>|2
= ; | < TTET () + ES( 0] [y > 2. (29)

It is possible then to interpret (29) in the following manner. There are two
different possible paths going from the “initial” state {¥) to the “final”
state [{,) (Figure 2). The first path corresponds to the absorption of a
photon from mode 1 at r, 7, and the second to the absorption of a photon
from mode 2 at r, . The amplitudes associated with these two paths are

[y >

E{7(r 1) EL N 1)

[

Figure 2. Schematic representation of the two amplitudes which interfere in a
single counting experiment. |¢) is the initial state, |¢,) the final state, and
E!*)(r,r) represents the absorption of a photon in mode i at point r and time ¢.
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CUAE{ U, )Y and (Y |ESD(r, 1)|§), with the result that the roral
amplitude for going from |{/) to |¢,) is written

CY | EFD ) [y > + o, | ESO 0y [y ) (30)

The transition probability |{) — |y, is gotten by taking the square of the
modulus of the sum appearing in (30). Since one does not observe the final
state of the field, it is necessary to sum these probabilities over all possible
states |, ). [If the initial state is not a pure state |¢) but a statistical
mixture of states, it is necessary in addition to average (29) over all the
possible states of this mixture.] The interference fringes observable from
wy are then due to interference between the transition amplitudes associ-
ated with the two paths of Figure 2.

An analogous interpretation can be given for wy;. Inserting the closure
relation (28) between the two operators E(~) and the two operators E ()
appearing in the expression for wy, one can show that the amplitude
[¥) = |¢,) in a double detection process is the sum of four amplitudes
corresponding to the four different paths represented in Figure 3. For each
of these paths two photons are absorbed, one at r’, ¢’ and the other atr, 7,
each of these two photons belonging either to mode 1 or to mode 2. This
gives 22 = 4 possibilities. These four amplitudes interfere when the modu-
lus of the global amplitude is squared in order to get the transition
probability [} — [¢,), then summed on the unobserved states [,y In
particular, the fringes appearing for two-photon states [see Equation (27)]
correspond to interference between two processes where the two photons
in modes 1 and 2 are absorbed in different orders: 1 at v, " and 2 at r, 7,
or2atr, t'and1atr,t.

[, >

e | [ e E{(r 1) E{( 1)

e || B E{ (. 1) E{oue, o)

[

Figure 3. Schematic representation of the four amplitudes which interfere in the
double counting experiment. The symbols have the same meanings as in Figure 2.
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The general idea which emerges from the preceding discussion is that,
in quantum theory, the interfering quantities are the transition amplitudes.
To explain that the interference fringes for w, are observable even when
the photons arrive one by one, one often says that “each photon can only
interfere with itself” and that “interference between two different photons
is impossible”. The discussion above shows that it is not the photons
which interfere but rather the transition amplitudes, and these amplitudes
can involve many photons. For instance, the fringes observable in wy
reveal the interference between two-photon amplitudes (Figure 3). One
can easily generalize and show that amplitudes involving three, four, ...
photons can also interfere.

5. Conclusion: The Wave—Particle Duality in the Quantum Theory of
Radiation

The discussion presented in this complement gives a better insight into
the description of the wave-particle duality by the quantum theory of
radiation.

The wave aspect is tied to the fact that the operators E of the various
modes superpose linearly and each have a sinusoidal dependence in r and
. It is because E(*) = E{*) + E{*) that, in the quadratic detection
signal E(E), in addition to the squared terms E{ E{") and E{E{"),
the terms E{7E{*) and E{E{") arise. The calculations closely resemble
the classical calculations. However, it must be kept in mind that £ is an
operator and not a number.

The particle aspect is contained in the states | ) of the field, which
indicate in some way what are the populated modes and how many
photons they contain. It must be kept in mind that the states also are
linearly superposable and that this property can be very important for the
observation of interference effects. The states |{) and |¢,) in Figures 2
and 3 cannot be arbitrary if one wants to have more than one path for
passing from |} to |§,). For example, a single-photon state which is a
statistical mixture of |1;,0,) and |0,,1,) with the weights |¢;|? and |c,}?
does not give fringes in w; whereas these are observable with the state
il 0y) + ¢yf04,15).

One sees then the richness of the quantum formalism which describes
the physical systems with two different mathematical objects: the opera-
tors for the physical variables, and the vector |¢) or the density operator p
for the state of the system.

GENERAL REFERENCES AND FURTHER READING

For photon antibunching, see H. J. Kimble, M. Dagenais, and L. Mandel,
Phys. Rev. Lett., 39, 691 (1977), and J. D. Cresser, J. Hager, G. Leuchs,



216 Quantum Electrodynamics in the Coulomb Gauge AnpS

M. Rateike, and H. Walther, in Dissipative Systems in Quantum Optics,
R. Bonifacio, ed., Springer, Berlin, 1982.

For single-photon interference see F. M. Pipkin, Adv. At. Mol. Phys.,
14, 281 (1978), and P. Grangier, G. Roger, and A. Aspect, Europhys.
Lett., 1, 173 (1986).

For interference with two independent beams, see G. Magyar and L.
Mandel, Nature, 198, 255 (1963), and R. L. Pfleegor and L. Mandel,
J. Opt. Soc. Am., 58, 946 (1968).

For intensity correlations and interference between amplitudes involv-
ing several photons, see R. Hanbury Brown and R. Q. Twiss, Nature, 177,
27 (1956); E. R. Pike, in Quantum Optics, S. M. Kay and A. Maitland, ed.,
Academic, New York, 1970; U. Fano, Am. J. Phys., 29, 539 (1961).



Bl Quantum Field Radiated by Classical Sources 217

COMPLEMENT B,
QUANTUM FIELD RADIATED BY CLASSICAL SOURCES

The purpose of this complement is to study a simple problem of
electrodynamics showing the importance of the coherent states introduced
in §C.4 of this chapter. We calculate the quantum field radiated by
classical sources whose motion is not perturbed by the field and show that
the state of such a field is a coherent state.

1. Assumptions about the Sources

We assume that before + = 0 no source is present. The radiation is
initially in the vacuum state

ly(@) > =105 (1)

At 1 = 0 the sources are “switched on”. The currents j(r) associated with
them are assumed not to be affected by the radiation they create (one can
imagine that the radiation damping of the sources is compensated by the
experimental setup which creates the sources). The preceding hypothesis
implies that the sources have an externally imposed motion. In addition,
we assume that the sources are macroscopic, that is, that the quantum
fluctuations of the currents about their mean values are negligible. This set
of hypotheses thus allows us to approximate the quantum currents j(r) by
well-defined classical functions of r and ¢, j,(r, r). Taking these approxi-
mations into account, what is then the state |{/(¢)) of the field for r > 0?

The preceding question favors the Schrodinger point of view, where the
temporal evolution involves only the state vector |{(¢)) of the system and
not the operators. In fact, as a result of the approximations made above
concerning the currents, the calculation of the temporal evolution is much
simpler from the Heisenberg point of view, where it is the operators which
evolve and where the state vector remains fixed and equal to (1). We will
use such a point of view in §By;.2 to calculate the evolution of the
annihilation operator a,(t) of mode i. A unitary transformation will
allow us in §B;.3 to go from the Heisenberg point of view to that of
Schrédinger and to determine what the state vector | (#)) of the system is
at time /.

2. Evolution of the Fields in the Heisenberg Picture

The equation of evolution for a,(t) [Equation (B.28)] can be written

a, +iw; a; = s, (2)

I
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where
i
5 = ——————
V2 ey o, L?

Strictly speaking, the current j(r) is given as a function of the variables of
the particles forming the sources [see Equation (A.5.b), Chapter I] which
themselves evolve under the influence of the forces exerted on them by the
fields. The evolution of the right-hand side s, of (2) is then in fact coupled
to that of all the a,, and the solution of (2) is not found easily in the
general case. It is necessary to adjoin the equation of motion of the
particles to Equation (2) and to solve these coupled equations.

The situation is much simpler if it is possible, as we will assume here, to
replace the operator j(r) by a known function j(r, £). Equation (2) then
becomes

jd%em‘agjuy 3)

a; + i, a; = 531 4)

where s¢(t) is a known classical function of ¢,

s = S S— jd%e"“" g julr ). (5
2 & iy, L?

Equation (4) is then easily integrated to give

aft) = af0)e” " + J dr’ sy e et (6)
0
The first term appearing on the right-hand side of (6) is the initial
quantum field a,(0), which has evolved freely from 0 to ¢, and the second
term is the field radiated by the sources.

Remarks

(i) Rather than introducing the simplifying hypotheses on j(r) in the equation
of evolution (2) for a,, we could make such an approximation directly on the
Hamiltonian. The Hamiltonian of a quantized field coupled to known classical
currents j,(r, ¢) is written in the Coulomb gauge as

H=H,; — [d3r'jcl(r, )+ A(r) N

where H, is the Hamiltonian of the quantized free radiation field and A(r) the
transverse vector-potential operator [see Equations (A.9) and (A.5)]. The opera-
tor (7) acts only on the radiation variables, and it is easy to show that the
Heisenberg equation for a, derived from this Hamiltonian is identical with (4).

(ii) The expression (6) for a,(t) allows one to get the quantized transverse field
at time r. All that is necessary is to substitute (6) and the adjoint expression in
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the expansions of the transverse fields in a, and «;". To get the total field, it is
necessary to add the longitudinal fields to these transverse fields, that is, the
Coulomb field of the charge density p,(r, ¢) associated with the sources and
assumed, like j,4(r, 1), to be a known classical function of r and 1.

To go further, we also write the equation of evolution of the classical fields
coupled to the known classical currents j(r, t). For this, it is sufficient to
replace the operator a4, in Equation (4) by the classical normal variable
a,(t) of mode i. One then gets

5+ i, @ = (1) (8)

whose solution corresponding to the initial condition «,(0) = 0 (no radia-
tion at ¢t = 0) i1s written

t
alt) = j dr’ sy e, C)]

0

The last term on the right-hand side of (6) can then be interpreted as the
classical field o (1) radiated by the known classical sources, and we
rewrite (6) taking account of (9):

aft) = a(0)e " + (). (10)

Finally we apply the two terms of the operator equation (10) to state
(1), which is the state of the system for all ¢ in the Heinsenberg picture.

Since
a0y |¢(0) ) = a; 105 =0 (11)
one gets

a() | (0) > = a(1) [ ¥(0) > . (12)

It appears then that the state |(0)) is the eigenstate of the operator a,(r)
with the normal classical variable «,(¢) of the classical field radiated by
the sources as eigenvalue.

3. The Schrodinger Point of View. The Quantum State of the Field at
Time ¢

Let U(z,0) be the evolution operator from 0 to ¢ in the Schrodinger
picture. We will apply U(z,0) to both sides of Equation (12) and in the
first term insert U*(z,0)U(1,0) = 1 between a,(¢) and | (0)). This leads
to

U, 0) aft) U (1,0) U1, 0) | Y(0) > = () U(1, 0) [¥(0) ). (13)



220 Quantum Electrodynamics in the Coulomb Gauge B3

The ket U(¢,0)[¢(0)) is the state vector |{/(7)) of the system at time ¢ in
the Schrddinger picture. Since U(#,0) is also the unitary operator allowing
one to go from the Heisenberg point of view to that of Schrddinger
at time 7 (note that the two points of view are identical at ¢ = 0),
U(¢,0)a,(1)U"(1,0) coincides with the annihilation operator a,, from the
Schrédinger point of view and is independent of time. Finally, Equation
(13) becomes

a [ Y(0) > = 2D [ Y(1) ) (14)

and shows that the quantum state of the field at time ¢ is the coherent
state associated with the classical field radiated by the sources at the same
time 7.

Such a result is physically satisfying. When the sources are quasi-classi-
cal, the quantum state of the field which they radiate is the quantum state
which most closely approximates the classical radiation ficld {«,(7)}, that
is, the coherent state |{a,(7)}). The only deviation is due to quantum
fluctuations, which in a coherent state are minimal and equal to those of
the vacuum.

REFERENCES

See Glauber.
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COMPLEMENT C ;;

COMMUTATION RELATIONS FOR FREE FIELDS
AT DIFFERENT TIMES,
SUSCEPTIBILITIES AND CORRELATION FUNCTIONS
OF THE FIELDS IN THE VACUUM

Starting from the fundamental commutation relations between a, and
a,, we have established in Part A (see also Exercise 1) the commutation
relations between the observables A | (r), E | (r), and B(r) taken at differ-
ent points but at the same instant. It is also interesting to consider the
commutation relations for the same fields taken at different times from
the Heisenberg point of view. For such a purpose, it is necessary to know
the temporal evolution of the fields. The objective of this complement is to
determine these commutation relations in the particular case of a free field
for which the temporal evolution has been found in §B.2.5.

Following the introduction in §C;;.1 of singular functions which are
useful in electrodynamics, we evaluate the various commutators in §C ;;.2.
Physically, these commutation relations allow us to find those observables
of the field which can be measured independently of one another. Addi-
tionally, the commutators play a fundamental role in linear response
theory: if the field, initially free, is coupled to an external source j(r) by a
coupling term —j(t)M, where M is an observable of the field, then the
evolution of another observable of the field, N, in this perturbed state is
given to first order in j by

t

(N = j dr’ yna(t, 1) j(1) (n
0

where the susceptibility X v, is just the mean value, in the initial quantum

state, of the commutator of the free fields N(¢) and M(¢'):

Tt 1) = 3 CING), M) @

The name free fields signifies that the temporal evolution of the operators
N(z) and M(t') arising in (2) is free, that is to say, calculated in absence
of sources j. Hence the free-field commutators at two different times give
also the mean fields created in first order by an arbitrary source. An
application of this procedure is given in Exercise 6, Chapter 1V.

We have already encountered in §C.3.c another important function
relative to free fields: the symmetric correlation function. For fundamen-
tal reasons (the fluctuation—dissipation theorem), the calculation of the
correlation functions in the vacuum turns out to be quite similar to that of
the commutators, and we will treat this in §C ;;.3.



222 Quantum Electrodynamics in the Coulomb Gauge (O |

1. Preliminary Calculations
We will need laier on the function D_(p, 7) defined by the Fourier

transform

d3k ei(k.pfwr)
Qn® o 3

D.(p.7) = i(’f

where w = ck. One can note in (3) that D, is the solution of the wave
equation

1 ¢?
22 4 )Dip D=0 4)
and thus propagates with velocity c.

To calculate (3) we use spherical coordinates and denote by u the
cosine of the angle between k and p. The integral becomes

o /.1
D,(p,7)=1 k dk3 2 J du eitkeu=cko)
o 2m) o
1 * ) i
= dk[elk(p—fﬁ _ e*lk(p+ct)] ) (5)
Q2m)’p L

Regularizing the integrals by a convergence factor e *" (where 7 is a
positive infinitesimal), one gets

1 1 !
D.(p,1)= Q2 7)? P‘j”] —i(p — 1) - n+i(p + ('l’)]
i 1

— . 6
27,[2 pz—(c't—in)z ( )
It is of interest to separate the real and imaginary parts of D, in (6):
D.(p,t) = D(p, 1) +iD(p, 1), (7)
= 12 2 k 77 2 . 2 (8)
Qm)ypln +p—c)” 1" +(p+cn)

1 p— T p+ct
D, = + . 9
Loty ["/2 +(p - P+ + CT)ZJ ®)

The function D is infinitely small outside the light cone p? = ¢>r* and is
odd in 7. It is then 0 for 7 = 0, and its derivative with respect to 7 at this



Cui-2 Commutation Relations for Free Fields at Different Times 223
point can be found directly from Equation (3) and has a value c4(p):

D(p,t =0) = 0;

~
D~
~ | -2

D(p, T) = co(p). (10)
=0

From Equation (8) we see also that D can be found in the limit where
n — 0 as a sum of two §-functions:

D —

an

D, is even in 7, diverges like a principal part in the neighborhood of the
light cone, and decreases outside as (p? — ¢?72) . One can regroup the
two terms of (9) to give D, as a function of p*:

p? — ¢t 4 n?

2)2 + 2 nZ(pZ + (,2 T2) + ’74'

‘

D, =

(12)

[\

nt(p? — c*t

2. Field Commutators

We start with the expression for the free fields from the Heisenberg
point of view:

A= Z oA [a,, €TV 4 qf geTithrmon) (13.2)
E(r1) = Zlc? [a, £ SWron _ gt g iter-an) (13.b)
k.g
Br,5) =) i4[a,k x g™ 790 — gt gk x ge ikrmon
o (13.¢)
where
12 8 &
& = _ho B =2 o =20 (14)
© 7|26 L° © T w

The commutators of the components m and n (m,n = x, y, z) of any
two of the fields are given in the form of a linear combination of the
commutators [dy,, ) [@he duel, and [ay,, ay.]- The first two are zero,
and the last is §,, 8, One then gets

[En(rrs ) e 3] = T 63 g, ™0 200 ) e (15.2)
[E,(r,, 1,), By(rs, 1,)] Zé’ ea(K x g), el etel oo

(15.b)
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[B,(r., 1,). By(ry 1,)] = Y Ak x8), (kx8e), gikr)motimol _ ¢,

ke

(15.¢)
[ALm(rl’ [1), Eﬂ(rZ’ 12)] - kz _ lQ/w g“ £, & e1[k Anmr)-oti—n)) e e

£

(15.4)

a) REDUCTION OF THE EXPRESSIONS IN TERMS OF D

In each of the expressions (15), the sum X,, breaks up into a sum on
the two transverse polarizations & and ¢, and then a sum over k. The
summations on the polarizations have already been made in §A,.1.a and
give

Y by = Oy — Kp Ky (16.2)
elk

Y ek X E)y = D 6 Ky (16.b)
elk !

Y (k X &), (K X &), = 0y, — Ky Ky, (16.¢)
elk

e,.,; being the completely antisymmetric tensor.
To simplify the notation we denote (r,, #;) by (1) and (r,, £,) by (2). The
differences between (1) and (2) will be denoted by

r—r,=p I — =T, (17)

By using the sums (16), this notation, and the expression (14) for
&, %, one gets

[E, (). E(2)] = %%%( mn — %’";) elke o0 _ cc, (18.2)
[E.D. BD] =5 kz Epmmi i’ ko~ o0 _ ¢, (18.b)
[B,(1). B,)] = C—E[Emm, E,(2)] (18.0
(4D, E2)] = EZ—O;Z—B‘GW, - k'z—f> ke e0 _ ¢ (18.d)

The discrete sum on k can be replaced by an integral (see Equation (C.34),
Chapter I). One can then insert D, (p, 7), or its derivatives and primitives
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with respect to p or 7, as follows:

) ko ka\ eitk.p—w1)
;F <5mn — k—2> egik-p-on _ (2d /;3 ((U () ¢? /\' k ) i =
A2 ~
_ s & 5 ¢ e\Dup D)
= <omn e ¢ o 7p > o (19.a)
2{(—1 ikp-wn d3k ei{k.p—wt)
%I;‘ke - ¢ (2n)3wl w
o
- Ta(_ D, (p,7) (19.b)

1 I\ k k k x(k.pfwr)
_ 5 __m n i(k.p— wt) __ 2%mMn _
% L 3 < mn k2 > J\ [(!) () ¢ o :| —(})

2 )
o0 , T 2 ¢ D (p.7
=1é o +(p ) El— ¢ j dl"ﬁ—ff). (19.¢)

~ )

CPpm €D,

In (19.c) we have used the fact that D, decreases like 1,/72 at infinity, so
that its primitive gives a zero contribution at the lower limit of the
integral. The contribution of the complex conjugate term appearing in (18)
causes the imaginary part of D, to vanish, so that finally it is its real part
D(p, 7) which is present:

[E.01). E2)] = A[B,(1). B2)] =

; A2 A
== [ém,,‘—z - @‘—%} D(p.7) (20.2)

N Pm CPn
— ih ¢
[E,(D.BQ] = ¢ X b 5 7, D0 ) (20.b)

—in[, ¢ , ¢ o[ ,
= — g " D(p,
[4,.(1), E,(2)] P [Omn = Dp. 1) 7 pnj dt’ D(p r)}

- X

(20.¢)

p and 7 are defined in (17).

b) EXPLICIT EXPRESSIONS FOR THE COMMUTATORS

Equations (20) allow one to discuss the essential properties of the
commutators by relating them to the function D examined in §C;;.1. One
can however go farther by substituting in (20.a,b, c) the expression (11)
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for D and by explicitly calculating the derivatives. The derivatives with
respect to p,, or p, are found using

¢

P

f(p) = %"’f’(p)- 1)

One then gets

[E,(1), E,)] = ific (6,"" & & o ) [6@ — 1) — 8(p + CT)]

2 A2 A A
(mepn

4 ne, et it p
ke {(3 PmPn s >[5’(p—cr)—5’(p+cr) _dp—cr)—d(p +cr)]
- 4 e, p2 mn pZ p3

_ (p,,. £n_ %) [é"(p —cr)=5'(p m)} } @
P P

[E.(1), B,2)] :4_?_0;% N [(s(p_(.f)_(s(pm)}

n cCt Op, p
ih p[0(p—cO)+8"(p+cr) (p—cO)+0(p+cr)
= 77 L b —’[ - ; (23)
me T P p p

(4D B =570 Om o 5

¢ ’ S(¢t’ — p) — ’
S j ¢ df[f’(cr p)— (et +P)]}
CPm CPy o P

ih {5 S(p—cn)+d(p+e)y ¢ ¢ 9((’t—p)—9(cr+p)}

in ¢ [dp—ct)—d(p+cty|
&

4 mey p CPm CPy p
ih 3 D Pr [0(ct—p)—B(ct+p)  3(p—c)—d(p+cT)
= - (3mn 3 + 2
4 me, p? L p P

_ <Pm £ 6,,.,,) [Mp —c)+0(p +cr)] } 24
p p

(x) is the Heaviside function [f(x) = 0 for x <0, 6(x) =1 for x > 0].

Remark

The equations (22), (23), and (24) are ambiguous when 7 — 0 because they
introduce in this case products of the function 8(p) with functions which
diverge at p = 0. It is then necessary to return to expressions with 7 finite or
else to Equations (18). For example, with 7 finite, Equation (20a) is no longer
singular. Since D(p, 1) is odd in 7, its value is zero at 7 = 0, as are its second
derivatives

[E(t,. ). Ey(rs. 1] = [B(r,. 1). By(ry. )] = 0 (25)
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From (20b) and (10),
— xﬁ

[Eulrs 0 B2 0] = =52 ot 75 000). (26)
Finally, using (18d) for = 0,
(A n(ry, D), Efry, 0] = "_ (P - (27)

This gives the result gotten in a more elementary fashion in Exercise 1.

¢) PROPERTIES OF THE COMMUTATORS

All of the commutators (20) depend onlyon p =r, — r, and 7 = ¢, —
t,. This property reflects the invariance of the theory under translations
over space and time. With respect to rotations, the commutators are
second-rank tensors.

All of the commutators are numbers and not operators. This property
is directly related to the linearity of the field equations. One can also
express this result by stating that the susceptibility of the field is indepen-
dent of its state; the field created by a known source is independent of the
previous field.

The commutators of the electric and magnetic fields are zero outside
the light cone defined by p* = ¢%r? [the only functions appearing in these
commutators are the functions 8(p + ¢7) and their derivatives]. Outside
the light cone, these physical variables can be measured independently of
one another. Finally, even on the light cone, the components of E and B
on a given axis always commute; they correspond to independent degrees
of freedom of the field.

The commutators of A | and E appear differently; in addition to a zero
component outside the light cone, they contain a term made up of the
product of a function of p with [0(c~r — p) — 0(c7 + p)]. This factor is
zero for the timelike intervals (c¢?7% > p?) and —1 for the spacelike
intervals (p* > c?r?). The commutators are thus nonzero outside the light
cone. This again demonstrates the existence in A | of an instantaneous
component.

3. Symmetric Correlation Functions of the Fields in the Vacuum

The product of two fields expressed in terms of the creation and
annihilation operators generates four types of products,

+ + + o+
Oye O i Qg O iy Aye Gicre -
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When one takes the mean value in the vacuum, all give a zero contribution
except the second, which is §,,8,,.

COTELD) EQ) + EQ E1)]0) =Y &2 5, 6, elen o0l 4 ¢
k.e

(28.a)

<O|E(1)B(2)+B(2)E(l)|0>—Zé 6, (K x£), X

w m

x glktrimm o=l o ce o (28.1)

(O1B,(1) B2)+B,2) B, (1)|0) = ) Bk xg), (k xg), x
k.e

X ei[k-(rlffz)*w(h_tz)] +cc (28 C)

The expressions on the right are identical to those of (15.a,b,c) up to
replacement of —c.c. by +c.c. It is thus not necessary to repeat these
calculations; it is sufficient to replace on the right of (20.a, b) the real part
D of D_ by its imaginary part iD;. One gets

O] E, (D) ED+E2) E,(1)|0> = ¢ <0 B,(1) B)+5,2) B,(1)] 0

A2 & 0
= ——ﬁ—<(s e )D(p,r) (28.d)
g C

PT (pm(pn

COIED B2 + BRI EM]0) = %Z 8%% Dy(p. 1) (28.9)

where D, is given by Equations (9) and (12).

Off the light cone (p* # ¢%*r?), D, is finite. Taking n = 0 in (12) gives
immediately

1

1
Di(p.7) = ﬁm (p* # c*1Y). (29

The calculation of the derivatives presents no difficulty, and one gets

2 2 22
COVE(1) E2) + Ef2) Ep(1)]0 ) = 2N PmPn — Smilp” + 7 )

7, (pr — 22
(30.a)
COLEL(1) B2) + B E1)10> = — 5 L z_p—’(fi)
(30.b)

The autocorrelation functions of E and of B decrease as 1/p* and 1 /7% at
infinity; between different components (m # n), the decrease is more

rapid: as 1/7° The correlation functions between E and B decrease as
1/0% and 1/75.
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The explicit form of the correlation functions near the light cone is very
complex. To get them one starts from Equation (12), being careful to keep
7 finite, and takes the derivative twice with respect to p and 7. The result
is a rational fraction in p and ¢t whose numerator is of 8th degree and
whose denominator is of 12th degree in the general case. We will give here
the result in the special case of the time correlation functions of the field
at a given point (p = 0). One can find them starting with (28.d) and (28.¢)
or else with the sums of the type (28.a) and (28.b), which simplify
significantly for p = 0. One gets

COVE(rt) Efr, ty) + E(r, 1) E(r,1,)]0)> =
_ 2Hc 5 Attt —6nrctt + ot
mn i’ + &)
COTEL(r 1) By(r, 1;) + By(r, 1) E,(r, 1) [0 = 0. (31.b)

(31.a)

2
g

The second result is evident; since D, is even in p, its derivative with
respect to p, is odd in p, and therefore zero at p = 0. The autocorrelation
function of the fields (31.a) is clearly even in 7. It decreases as 1/7* at
infinity, and its general shape is given in Figure 1.

2 he

P

4

~ I,*

e \-\l

Figure 1. Variation of the autocorrelation function of the electric field in the
vacuum with 7 [Equation (31.a)]. 7 is vanishingly small. For 7> n/¢, the
function is positive and decreases as |7} ",

GENERAL REFERENCES AND ADDITIONAL READING

Commutators between the components of the free field and the properties
of the special functions like D, D,, etc. are studied in most works on
relativistic quantum electrodynamics, such as Akhiezer and Berestetski
(813) and Heitler (Chapter 11, §88, 9).
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Exercise

Exercise 2

Exercise

Exercise
Exercise

Exercise 6

Exercise
Exercise
Exercise

1. COMMUTATORS OF A, E |

Exercises ) J

COMPLEMENT D
EXERCISES

Commutators of A, E | , and B in the Coulomb gauge

Hamiltonian of a system of two particles with opposite
charges coupled to the electromagnetic field

Commutation relations for the total momentum P with
H,, Hg, and H,

Bose-Einstein distribution

Quasi-probability densities and characteristic functions

Quadrature components of a single-mode field. Graphical
representation of the state of the field

Squeezed states of the radiation field
Generation of squeezed states by two-photon interactions
Quasi-probability density of a squeezed state

AND B IN THE COULOMB GAUGE

Express the commutators [A,(r), 4,(r)], [4,(), E, ()], [E, (),
E, ()], and [E (r), B(r")] (m,n =X, y, z) as a function of the cre-

ation and annihilation operators a;
their values.

Solution

and q; of the different modes. Find

Let V,, and W, be two field components. These can be expressed as linear combinations of
a, and a; [cf. (A3), (A4), and (A9)]:

=2 w G U] (L)
W, = }:w,uaj +wral (1.b)
v, W, = Z Uy Won, aj] + oy u,”[a a; o ekwlel aj + v¥; 1\':‘1.[(;‘_" aj*]. 2)

From the fundamental commutation relations (A.2) this last expression reduces to

Vm w ] = Z (lml LT l.mi “'m)' (3)

We apply this equation in the different cases:

V, = A o U, = o, by, e 4.2)

m

W = Ar) > wy = &, &, e*" (4.b)

n
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[Am(l'). An(r')] — kZWmZ . Sn(eik.r e*ik.r’ _ e—ik.r eik.r') =0 (5)

since the contributions of the modes k and —k are opposite in the summation which arises in
(5). The calculation is identical for the commutator between components of the electric field
to within the multiplicative factor of iw for 7.

LELn(D). EL(F)] = 0. (6)
For the commutator between 4,, and E, ,, (4.a) remains unchanged and

W, = i o, g, T (7)

ni o,

We get

(A0 E(0)] = 3 = 0 /2 6, (e @™m0 4 ¢mir gikr)
k.e
. h
- 2 e
;ﬂ i5 P €, &, €

ik (r—r)

(8)

We have used the expression (A.6) for &/, and the fact that the contributions of the two
terms in the parentheses of the right-hand side of (8) are equal (to see this, change k to —k in
the summation over the modes). We now replace this discrete summation on the modes by an
integral [see (C.34) of Chapter I}, and use (1) from Complement A;. Then we have

" ’ — h l 37 aikr~r) . N
[AAr). E ()] = PNvE .[d ke Z £, 6,
— h 1 km kn ik(r~r")
TR [d k( - >e : (9

The function 8,%,(r — ) defined by (B.17), Chapter I, appears and leads to

[A,(r). E.{)] = ——o (r—r). (10)

Finally we calculate the last commutator,

[EL a0, B,()] = [E,(nN (V" x A(r)),]
Z Snpq V;v[ELm(r)~ Aq(l")]

— ]‘ .
(“) [ ‘kZ(}: emp 1K, q> ekt n (an

The sum on & of «,i(k X €), becomes, following (4) of Complement A, i X,e,,,k,. The
factor ik, can be replaced by the action of the operator — V, on the function of r resulting
from integration on k. We get then

4 = _h_ l 3, Sk —r
[Eim(r)~ B,,(l')] = iEO ; Eni V, (7;)1' J‘d k el !

o V1 O(F — 1) (12)
which gives (A.15).

Note finally that (5), (6), (10), and (12) are special cases of the commutation relations
between fields at two different times discussed in Complement Cyy;.
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2. HAMILTONIAN OF A SYSTEM OF TWO PARTICLES WITH OPPOSITE CHARGES
COUPLED TO THE ELECTROMAGNETIC FIELD

Consider a system of two particles 1 and 2 with masses m, and m,,
opposite charges ¢, = —q, = g, positions r, and r,, and momenta p, and
p,. These two particles are assumed to form a bound state whose dimen-
sions, of the order of a,, are small compared to the wavelength A of the
modes of the radiation field which are taken into account in the interac-
tion Hamiltonian. All calculations are made to order 0 in a,/A (long-
wavelength approximation), and the magnetic spin couplings are
neglected.

a) Write the Hamiltonian in the Coulomb gauge for such a system of
two particles interacting with the electromagnetic field described by the
transverse vector potential A. The results will be expressed as a function
of the center-of-mass variables (external variables)

mr; +n,r,

m; + m,

and the relative variables (internal variables)

P p p
r=r, —r, (2.2) E:m_ll_m*zz (2.b)
where m is the reduced mass
my m,

n=—-— 3)

m; + m,

We call the total mass M = m; + m,.

b) Calculate the matrix element of the interaction Hamiltonian be-
tween the state |K, b;0) (center of mass in a momentum state #K,
internal atomic state b, 0 photon) and the state |K’, g; ke) (center of mass
in a momentum state #K’, internal atomic state a, one photon ke&). How
does the conservation of total momentum manifest itself in this matrix
element?

Solution

a) The Hamiltonian of the particles is
pr P q’
2my  2m, 4dmey|r, —r, |

H, C)
(one omits the Coulomb self-energies of the particles, which are constant). It can be written
(*) as a function of the variables (1) and (2):

PZ pZ ‘12

HP:2M+m74m:0r‘ ©)

(*) Sce for instance Cohen-Tannoudji, Diu, and Laloég, Chapter VII, §B.
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In the interaction Hamiltonian H,, + H,, with

4a

g
Hy, = - ”lTlpl'A(r]) _pz A(ry) 6)
1

qi 42 43 .
Hy = 57— Ar) + I m AS(ry). (7

3
2m,

one can, to order 0 in a,/A. replace A(r;) and A(r;) by A(R), since |r; — R| and |r, — R|
are of the order of 4, and A varies over distances of the order of A. Since ¢; = —¢, = ¢,
this then becomes

- P, _ Py - — 4P
Hy, = [(m‘ m) AR) = 11 * A(R) (8)

2
4 ! A? ‘1 2
H,=>%|— =
7= 5 (m] + ’”z) (R) = A (R). )
The external variables only arise in A, which is evaluated at the center of mass of the system.
The internal variables appear only in H,, through the relative velocity p/m.

b) In the matrix element

(K.a:ke| H |K b;0)>. (10

only Hj contributes (the term linear in 4 and «*). Additionally, for the creation of a
photon ke, it is necessary to take the coefficient of ay/, in the expansion of A(R). One then
gets for (10)

- - |
\/;{ <r)L‘< K. a: ke 7,%‘)'867“"““1; K. b:0). (an

k-

The matrix elements of p, e '¥ R and ay, are factored to give

q |

/

ﬁ N ’ —ik.R
o T (Ul ER b CK e K (2)

The last matrix element is proportional to

dJRefoRCf:l‘.RCnI\.R

that is to say, finally, to (K — k — K’), which implies that the total momentum of the initial
state, hK, must be equal to the total momentum of the final state, AK’ + hk.

3. COMMUTATION RELATIONS FOR THE TOTAL MOMENTUM P WITH Hp, Hp,
AND H,

Let P be the total momentum of the system (charged particles +
quantized electromagnetic field). Let H be its Hamiltonian. Recall that P
and H are given respectively by

P =3p, +2hka g (1)
H:HP+HR+HII+H12 (2)
with 0
ax11p .coul
Z2m Z,;4nsofr1—r,,| +§1” (3.2)

wa < Sa + ;) (3.b)
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H, = — Z% AT (3.9

Hi=Y57 G A (3.d)

Show by using the fundamental commutation relations that P com-
mutes with Hp,, Hg, H,, and H,.

Solution

To solve this exercise we need the following commutation relations between p,, 4,, 4, , and a
general operator M:

‘M

. 4 . L
[(p);. M] = — mm Jj=xyc (4.2)
. M1 = M (4h) i )= — M. 4.0
‘a; ‘a

Let us begin with [P, Hp]. Since g, and 4, commute with the particle operators, we have

(P H,] [ZP; } = [Z P,-g?mﬁ%‘_—r?']- Q)
For a given pair of particles B,y in V. the commutators relative to p; and p, have
opposite signs, so that (5) is zero.
The commutator [P, Hg] is clearly zero, since the operator N, = 4, a, arises both in P
and in Hg.
To study the commutators [P, H; ] and [P, H;,], we show first of all that [P, 4 (r,)] = 0.
For this we examine the two terms of (1) separately and use the expansion (A.5) of A(r,)

[Z P, Aj(r,)l = — AV, Afr) = Y Bk o, (e) (g € — af e (6)
B . i

o

{Z fik; a;’ a,. Afr,) -‘ th(a*l—Af 4 ‘.>:

iy Ca;
=Y ik, o, (&) a] M — g e ()

By adding (6) and (7) it is clear that [P, 4 (r,)] is zero. The expressions (3.c) and (3.d) show
that H;, and H,, are constructed starting from the operators ( p,), and 4 (r,), which both
commute with P. As a result, they themselves commute with P.

4. BOSE—EINSTEIN DISTRIBUTION

Consider a mode of the electromagnetic field in thermodynamic equi-
librium at temperature T. The density matrix of the field is

1
LR
p=-e (1
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with 8 =1/k.T and
H = Iia)<a+ a + %) @)

a) Calculate Z by using the property that Trp = 1.

b) Calculate the mean value (N) and the variance (AN)? =
((N = (N))*) of the number of photons in the mode.

¢) Derive the probability f(n) of having n photons in the mode as a
function of n and (N) (it is called the Bose distribution law).

Solution

a) The normalization condition for p,
Trp =1 3)
1s written

éze*ﬂ("‘i)ﬁ“ =1 (4.2)

so that by carrying out the summation over n, we have
i e Bho 2
Ssl—=) =1 4.b
2(1 —e Mo (-5

o~ Hhoi2
= | — ¢ Pho- )

from which

zZ

b) The mean number of photons in mode # is given by

(N> = an,m (6)

n

where p,, is evaluated using (5):
= e"”""”(l — g ey 7
To calculate (N), start with the following expression used in going from (4.a) to (4.b):

e " —
>

1
1 —e¢

= ®

where x = Bhw, and take the derivative of both sides with respect to x. One gets

-

nx e
Sre = e )

By comparing this expression with that gotten in (6) and (7) we find that the mean number of
photons in the mode being considered is

e*[}hm 1
(N> = | _ e fmo = Mo |- (10)

To get the variance (AN )2, it is necessary to first calculate

< /VZ > — an pnn — ane—nﬂmu“ - efﬁh())» (11)
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For this it is sufficient to differentiate (9) with respect to x:

e Nl +e7)

Z”Zef"x:(l—iw (12)
which gives
eflm"’(l + e—ﬂmu) 1 ebtio
<N2 > = a1 — efﬂ’ln)Z = (eﬂﬁm — l)z + (eﬂhm — 1)2- (13)
The first term of (13) is just (N )?, so that
fhe Bho )+ 1 i i
ANY — — € _e =
(AN) Py U o @) i = 02 (19

which can be transformed by means of (10) into
AN = [{NY? + (NDT 2. (15)

We can conclude that AN is of the order of (N) for (N} large and of the order of V(N
for (N') small.

¢) The probability #(n) is given in (7). To express it as a function of (N ), we use (10) to

eliminate e #% and we get
o 1 (N> )"
"(")_1+<N>(1+<N> : (16)

One notes that, contrary to the Poisson distribution (C.52) gotten for a quasi-classical
state, (1) always decreases with increasing .

5. QUASI-PROBABILITY DENSITIES AND CHARACTERISTIC FUNCTIONS

Throughout this exercise one considers only a single mode of the
electromagnetic field, whose creation and annihilation operators are a*
and a. Let p be the density operator of this mode of the field. The
purpose of the exercise is to present various properties of two quasi-prob-
ability densities P,(a, a*) and P, (a, a*) and of the associated “character-
istic functions”.

a) A being a complex number, one defines the functions Cy (A, A*)
and C (A, A*) by

Cy(4, %) = Tr(p et e *™) (1)
CA %) =Tr(pe *ete’y. (2)
By using the Glauber relations

e(),a’*/ﬂ*a) — e).u* e*/ﬁ*a e*|/1|2/2 — efll*u e/ﬁa* e’/l|3r’2 (3)

establish the relationship between Cy (A, A*) and C, (A, A*).
b) Consider the classical functions f(A, A*) and g(a, a*) such that

/(/A,, /Z*) — J\d21 g(1‘ ZX*) e(;.z*,;vxy) (4)
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where d’a = d % ad %= a. By taking
= ap + 19, (5.a)
, 1 .
=5 - i) (5.b)

where ap, ag, U, and v are real, show that f and g are related by a
two-dimensional Fourier transformation and that

g(a, a¥) = %szif(i, J¥) g V) (6)

¢) Consider the function of a

P o) =1 Calplad ™

where |a) is a quasi-classical state. Prove the following two relations:
sza P(o, a*) =1 (8.a)
{@)™a™) ) = sza P (% o*) ()" (a*) (8.b)

Infer from these relations that P,(a, a*) is a quasi-probability density
suited to antinormal order.

d) By using the definition (2) for C,(A, A*), show that there exist
between C (A, A*) and P,(«, a*) Fourier transform relations of the type
of (4) and (6).

One calls C,(A, A*) the characteristic function of P,(a, a*). How can
one express (a™(a”)") as a function of the derivatives of C,(A, A*) with
respect to A and A* (considered as independent variables) evaluated at
A=A*=0?

e) Assume that p has a P-representation, that is, that there exists a
real function P, (a, «*) such that

p:szxPNw.x*>|a><a| ©

where |a) is a quasi-classical state. Show that

sza}},(oc, a*) = 1 (10.2)

CaN (a" ) = szx Py, 2%) (%) ()" . (10.b)
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Infer from these relations that Py(a, a*) is a quasi-probability density
distribution well suited to normal order.

f) By using (1) and (9), show that Cy (A, A*) and Py (a, a*) are related
by Fourier transform relations of the type of (4) and (6). For this reason,
Cy (A, A*) is called the characteristic function for normal order.

Give ((a*)/a™) as a function of the partial derivatives of Cy(A, A*)
with respect to A and A* (taken as independent variables) evaluated at
A=A*=0.

g) Calculate (B|p|B) with the help of Equation (9) (]8) being a
quasi-classical state), and derive the relationship between P,(f, 8*) and
P, (a, a*). Can one establish this result directly beginning with the results
of a) on the Fourier transforms relating C, (A, A*) and C, (A, A*) to
Py (a, o*) and P,(a, a*)?

h) To illustrate these results with a physical example, find the functions
P(a, a*) and Py(a, a*) for radiation in thermodynamic equilibrium at
temperature 7, for which (see Exercise 4)

p :%e*[lhw(a*aﬁ-%) (11)

where 8 = 1/k_T, Z being such that Trp = 1. For this particular exam-
ple find P,(a, a*) and P,(a, a*) using the results of the preceding
questions.

Solution

a) Equation (3) immediately gives the equality
T T AN o g AN hu” Gl (12)
which substituted in (1) leads to

Cld, 4%) = C (4, i¥) el (13)

b) Using Equations (5.a) and (5.b), we rewrite (4) in the form
I 1 . .
[, 2*) = 3 deocP dxy(2 mg(a, a*)) e = e ixer, (14)

We see that f(A, A*) and 27g(a, a*) are related by a Fourier transformation. The inverse
transformation of (14) is written

I o )
2 my(a, a*) = o [du de f(4, A¥) 7Pt gi*et (15)

which coincides with (6), since d’A = (dudv)/4.
¢) To derive (8.a), we start from

Trp=Y<nlpln)y=1 (16)
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and introduce the closure relation (C.56) between (1| and p:
1 P ! 2
Trp:7—l oY Cnjadalplnd == o Y <alplndyin|ay)=

:lfd21<11/)fa> (17)
n
which corresponds with (8.a). We now calculate {a"'(a* )/):

@@y y = Trp@y" @y = Cn | pla)" @) | nd (18)

so that, by introducing the closure relation (C.56) between a™ and (a*)', we get
! +
@@y y = - fdzd(z Cnlpla@y oy Cal@®y [n >>
[
== fd“a(a)”’(i*)' (Z <nlplay(xfn >>

:Hdzawu*w xlplad (19)

which agrees with (8.b).

Equations (8.a) and (8.b), together with the fact that P,(a, a*) is real and positive (as a
result of the general properties of the density matrix), show that P,(a, a*) has properties
similar to those of a probability density. In fact, it doesn't behave like a true probability
density, but rather a quasi-probability density. Actually, for a system in the quasi-classical
state |B), one would expect to find a zero probability density when a is different from g.
This is not true for P (a, a*), which is equal to (1 /m) e “1B=el" when p = |B){B|. according
to (C.55). P,(a, a*) is a quasi-probability density well suited to antinormal order, since the
mean value of the operator a”(a*)’ where ¢ and a* are arranged in antinormal order is
easily expressed [see (8.b)] as a function of P,(a, a*).

d) Introducing the closure refation (C.56) between e~ and e*¢’ in Equation (2). we
get

C (4 %)

Z;{ [d21<i1|/)e”"”11><oc{e‘"“‘|n>

n

[dza<z<n|p|1><oc]n))e"""e""

)=

il

[dza P (% 2%)e et (20)

This shows that C,(A. A*) is related to P,(a, a*) by an expression of the form (4).
We calculate ' /C, /(8 X*)"(IN) using (2):

7’"*”(; - i*a m jAa* +
W(({‘T),= Tr(pe (- ay" e’ (a)) 2n
whose value taken at A = A* =0 is
Tr(p(— @)™ (@*)) = (- D" {(@" @) > (22)

which shows the relationship existing between the derivatives of the characteristic function
and the mean values of the operators 4 and a' arranged in antinormal order.

e) Equations (10.a) and (10.b) have been already established in the remark of §C.4.c.
Py (a, a*) is a quasi-probability density well suited to normal order, since the mean value of
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a product of operators ¢ and a* arranged in normal order is easily expressed by means of
(10.b).

f) We calculate Cy (A, A*) with p defined by (9). Substituting this relation in (1), we find

Cy(i %) = | d2x Py, 2*) Tr (| 2> (x| e’ ™7, (23)
The cyclic property of the trace allows us to write

Tr(layCale® e™™) =Tre"™ad{ x|’ )= ™ Tr(lad ) =

= Hrei (24
which gives for Cy (A, A*)

Cyl7, A%) = [dza Py a¥)e’* e * (25)

which coincides with (4).

By proceeding as in part d) we find
M CWA A PO RN LY m
W:Tr(pe @) e (- a (26)

whose value for A = A* = 0 is equal to (— 1)"{(a™)a™).

g) We find the diagonal matrix element (B|p|B) by using (9) and (C.55):

CBlol By = [dza Pyl 2 [ LoD = [dza Pyl a*¥) e P73 27

which shows, taking into account (7), that P,(B, B*) is the convolution of P, (a.a*) and a
Gaussian function

P (B, p*) = [dZaP o, x¥ye -3l (28)

This result can be found by other methods. Equation (13) shows that C,(A. A*) is the
product of Cy (A, A*) with e Az . By taking the Fourier transform of both sides, one finds on
one hand P, and on the other the convolution of the Fourier transforms of Cy and of e -
that is, as in (28), the convolution of P, and the Gaussian distribution.

h) Starting with the form

_ 1 (NS Y
pAl+<N>;(l+<N>>|”><"[ 29

gotten from (16) of Exercise 4, we calculate (ajp|a):

1 N "
ol = s ey ) 1o P

e (N> )"m“
_l+<N>;( 1 +<N>Y) a!

el (NYLaf?
TTr A PTIONS (30

from which we get

1
(l+</\>)expl+<'\/> (3D

|Z
P (x 2*) =
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By using (20) and the fact that the Fourier transform of a Gaussian is a Gaussian, we find

CylA.2%) = exp[— (1 + (N )| A]?] (32)
Cy (A, A*) is then gotten using (13):
C(h A¥) = =M1 (33)

and one finds Py (a, a*) by the Fourier transform

1 e s
P (% a*) = = sz). Cy (4, A%) =i

I
= _ e llm
NS E . (34)
The representation Py (a, a*) of radiation at thermal equilibrium is thus a Gaussian centered
about the origin and whose width is of the order of /(N ).

6. QUADRATURE COMPONENTS OF A SINGLE-MODE FIELD. GRAPHICAL
REPRESENTATION OF THE STATE OF THE FIELD

Throughout this exercise, assume that only one mode ke of the field is
populated, all other modes being empty (single-mode field). One is only
interested in the contribution of this mode to the free electric field, which
is written from the Heisenberg point of view:

Er, 1) =i, ¢la gitkr—on _ ,+ e~i(k.r—wz)] (1)
with &, = [hwf2 &, L3

a) One introduces the two Hermitian linear combinations of the cre-
ation and annihilation operators a and a* defined by

ap=%(a +a%) (2.a)
1
aQ:E(a—a+). (2.b)

Find the commutator [a,, a,], and show that Aa, Aa, > |, where Aa,
and Aa,, are the dispersions (root mean square deviations) of a, and ag
in the state of the mode under consideration.

Show that the Hamiltonian H of the mode can be written

H

%zi(a+a+aa+):aﬁ+aé. 3)

b) Give the electric field E(r, ) as a function of a, and a,. Show that
the operators a, and a, represent two quadrature components of the
field. What is the physical consequence of the nonzero value of the
commutator [ap, a,]?
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¢) Show that
ay = apcos O + a, sin 0 )

represents physically the component of the field out of phase by # with
respect to that described by a,. Show that H/Aw can also be written

H
7= ag + ag+n/2' ®)

hw

d) Assume that the state of the field is a quasi-classical state [a), and
take

|

op = i(oc + o*) (6.a)

_ 1 * 6.b
2 = 3 (a — %) b)
%y = apCOs O + a,sin 0. (6.¢)

Calculate the means values (a,), ( agy, and (a,y) of the operators ap,
ay, and ag in the state |a) as well as the dispersions Aa,, Aa,, and Aa,.
Show that these three dispersions are equal, and find their common value
8. By using the well-known results for the harmonic oscillator, show that
the distributions of the possible values of a,, a,, anday in the state |a)
are Gaussian.

e) Consider a classical single-mode field whose state is described by the
normal variable a. It is convenient to represent such a state by a point M,
of abscissa «, and ordinate ay, In a plane with two orthogonal axes Ox
and Oy. This plane can equally well be thought of as the complex plane,
ap and a, being the real and imaginary parts of the complex number a.
Show that ay is gotten by projecting M on an axis Of passing through the
origin and making an angle § with Ox. How can one characterize
graphically the phase ¢ and the energy H,/Aw (in units of hw) of the
classical field in state «?

/) Consider now a quantum field in the quasi-classical state |ay. The
incompatibility of a, and a, suggests no longer representing the state of
the field by a point, but rather by a small area centered about the point M
representing the classical state . Show that if one takes a disk of radius 8,
where & has been found above in d), then one gets, by projecting all of
the points of this surface onto the Ox, Oy, and 08 axes, three segments
correctly centered on (a,), (a,), and (a,) and whose width 28 gives a
good indication of the dispersions Aa,, Adag,, and Aa,.

g) The quantum field is still in state |a) but assume now in addition
that |a| > 1. By using results relating to quasi-classical states, show that
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the dispersion AN of the number of photons in the state |a) is simply
related to the length of the segment OM.

Let 2 Agp be the angle subtended at the origin by the disk centered at M
and associated with the state |a). Explain qualitatively, without trying to
define a phase operator precisely, why Ap gives the order of magnitude of
the phase dispersion in the state ja). Give A as a function of é§ and OM
in the limit |a] > 1. What relationship exists between Ap and AN?

h) There are states of the field which, while being minimal like the
state |a) (that is, such that Aa, Aa, = ), and while leading to the same
mean values of ap, a,, and a,4 as the state |a), do not have equivalent
dispersions for these various observables. These states can be represented
qualitatively by ellipses centered on M with the same area as the disks
considered in f and g. They are called squeezed states. Examples of such
states are examined in Exercise 7.

For a given ratio between the major and minor axes of the ellipse,
sketch the squeezed states corresponding to each of the following cases:

i) the dispersion is minimal on a,,

ii) the dispersion is minimal on a,,

iii) the dispersion is minimal on ag,

iv) the dispersion is minimal on ¢,

v) the dispersion is minimal on the amplitude.

Solution
a) From [a, a'] = 1 and Equations (2), it follows that
1
lap, ap] = 3 (7)
The general relation
1
Aa, A”Q = 3 | < ap. aQ] > ‘ (8)
then gives
Ady Aag > 1/4. O)

Finally, Equation (3) is a consequence of (2).

h) By replacing e* "=« with cos(k - r — wt) 4 isin(k - r — wr) in (1) and using (2),
we can write E(r, ¢) in the form

E(r,/) = — 26, ¢[apsin(k - r — wr) + aycos(k - r — wr)] (10)

which shows that u, and 4, describe two quadrature components of the field.

Equation (7) shows that these physical variables are incompatible. Any increase in the
precision of one component of the field is accompanied by an increase in the uncertainty of
the quadrature component.
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¢) Changing from 8 to 8 + = /2 in (4) yields

Ayinz = — apsinl + aq cos 0. (11

Starting from (4) and (11), it is possible to give ap and ag as functions of a4 and 4y, .
Substitution of these expressions in (10) then gives

Er.t)= —26&,e[apsin(k-1 — ot +0) + ayy, ,cosk 1 —owt+0)] (12
which shows that the components of the field associated with ap, and a4 are out of phase
by 4.

’ It follows also from (4) and (11) that
a4+ @, ., = ap + af (13)
which, taking account of (3), gives (5).
d) The calculation of the mean values of the operators (2.a), (2.b), and (4) in the state
la) gives, when taken with the relations aja) = ala) and (aja* = a*(a| and the defini-

tions (6), Cap)y = ap (14.2)
Cag> =2 (14.b)
Cag) = 2. (14.c)

Now we calculate Aa2:
Aap = Calapla)y — (K afap|a))?
1 R
=Z<a¢|uz+a*‘+aa+ +atalxy — o

1

Cala® +a™ +2a%a +1]a) — 42

4
_1 2 *2 * 2
—Z(oc + ¥+ 2t + 1)~ xp
1 1
— A2 —
=%ty %=y (15)

Analogous calculations can be made for Aaé and Aaj. One finds then that

. (16)

o —

Aap = Aay = Agy = 6 =

Equations (3) and (5) along with Equation (7) and an analogous equation for [ag. agrmyal,
show that the Hermitian operators ap and a, or a4 and g4, ,,, are analogous to the
position x and the momentum p of a one-dimensional harmonic oscillator. Since the
distributions of x and p in a quasi-classical state are Gaussians and since this state is a
minimal state, it follows that the distributions of ap, ag. and ay are Gaussians whose
dispersion has a minimal value (16) compatible with the uncertainty relation (9).

¢) The definition (6.c) of ay implies that a, is the projection of OM = aye, + agye, on
the axis Q8 (Figure 1). The phase ¢ of the field is described by the angle ¢ between Ox and
OM. Finally, foilowing (3), H,/hw is equal to OM?, the square of the distance from O
to M.

1

/) The projection of the circle centered on M with radius 8 = 3 on Ox, Oy, and Of
gives three segments of length 28 = 1 centered on ap, «, and az. One then gets a good
representation of the mean values and dispersions of ap, ¢, and a4 in the state |a).

g) In a quasi-classical state (see §C.4.¢),

AN = AN =12 =2 (7
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Figure 1

Furthermore, from (6.a) and (6.b), it follows that |a?| = a2 + aZQ, so that |af = OM. One
has then

AN = OM . (18)
On the other hand, if |a| > 1,
3 1 1
AP =0m =3 om (19)

Ag corresponds to the dispersion of the values of ¢ for the various points inside the circle in
the figure. Ag thus clearly represents a phase dispersion. Finally, the combination of (18) and
(19) gives

I
AN Ap = 5. (20)

The number of photons in the mode and the phase of the field are therefore incompatible
variables.

#h) The major axis of the cllipse centered on M is

— parallel to Oy in case 1),

— parallel to Ox in case ii),

— perpendicular to 08 in case iii),
— parallel to OM in case iv),

— perpendicular to OM in case v).

Consider case iv) in more detail. Figurc 2 represents the circle centered on M associated
with the state |a) and the ellipse with equal area and whose major axis is parallel to OM.
Since the areas of the circle and the ellipse are the same, the minor axis, perpendicular to
OM, is smaller than the radius 8 of the circle. The angle which the ellipse subtends at O is
smaller than the angle subtended by the circle. The phase uncertainty Ag is thus smaller for
this squeezed state than for the coherent state. In contrast, the major axis of the ellipse is
larger than the radius of the circle. The dispersion of distances from 0. that is, the amplitude
dispersion, is greater for the ellipse than for the circle. The gain in precision in specifying the
phase is accompanied by an increase in the amplitude uncertainty. Similar arguments can be
developed for the other cases.
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Figure 2

7. SQUEEZED STATES OF THE RADIATION FIELD

The purpose of this exercise is to introduce states of the field which
have unequal dispersions on two quadrature components of the field, the
product of these two dispersions having the minimal value compatible
with the uncertainty relation (*).

Consider the following operator acting on a mode of the field:

Bzé(a2 — a*?) ()

where r is a real number and @™ and a are the creation and annihilation
operators for that mode.

a) Find the commutators [a, B] and [a™, B].
b) Let T = e®. Show that T is a unitary operator.
¢) Using the operator equation

_ 1
e?X e B=X B X] +T[B,[B,X]] + o+

+ nl![B, [B,..[B,X)..1] + (2

calculate TaT* and Ta*T".

d) One introduces the operators a, and a, characterizing two quadra-
ture components of the field using the relationships (see the previous
exercise)

1
@ =ta+a) () ag = 5=(a—a%). (3.b)

(*) See for example D. F. Walls, Nature, 306, 141 (1983).
p
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Calculate b, = Ta,T*, by = Ta,T* as well as TajT* and TajT™.

e) Assume that the field is in the state |c¢) = T |a) where |a) is a
quasi-classical state. Find the mean values of a, and a, in state |c) as
well as the corresponding dispersions 4a, and Aa,,.

Solution

a) First find [a, B):

{a,%(az - u”)w = — %[a,a”] = —rat. 4)

Consider now [a*, B]:
REArys RS 1N I SR
[a ,E(a a )—I 2[az La’] ra . )

b) The expression for T,
T+ :Cr(u‘zfal)Z:efB (6)
shows that TT* =TT = 1.
¢) By using Equation (2), we find that TaT" is equal to

eBue’B=a+[B,a]+2l[ Ba]+—[B[B[Ba]]] 7

which one can transform using (4) and (5):

3
B, .-B _ . I 4
e ae =a4rat + a+§—'a +

2 -3
T P ) o

It is easy to check, by examining the next terms of the expansion (8) that the coefficient of «
is cosh r and that of 4™ is sinh r:
eBue™® = acosh r + a” sinh r. )

The adjoint expression to (9) is written

ePute B =y4" coshr+ asinhr. (10)

d) By combining (9) and (10) we get
bp=3(TaT*+ Ta*T"),

cosh r + sinh r

=(a+a") 5 = upe’ (11)

and analogously
1 y
by = E—i(TaT+ —Ta" T*) =aye™". (12)
The relations (11) and (12) define changes of scale for the observables 4, and a,. We now

find Ta3T*:
T T = Tap T™ Ta, T = b} = ape? (13)
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and likewise
Tal T = b} =aje ™. (14)
e) The mean values of ap, ag, a3, and aé in the state |¢) are respectively identical to

those of bp, by, b3, and bé in the state ja). Using (11) and (3.a) as well as (C.46) and
(C.47), we find

Celapled = Calbplay = 228 e as)
and by using (12) and (3.b)
_ *
Celagley = Calbglady =252 o (16)

For (b3), we find using (13) and (3.a)
<(-\u,2,|c>:<oc|hf,|oc>=£<oc\az +at +2ata+1|x)yer

o 2% 41,
= - e

' (17)

which gives finally, using (15) and (17),

5

Aap=%. (18)

An analogous calculation made for bQ and using (3.b), (14), and (16) gives

o
Adg = - (19)

We conclude that the state T" |a) is a minimal state, since Aup Aug, = 4, but for which the
uncertainties in 4, and a,, are different. In the graphical representation in Exercise 8, one
gets the region representing the state 7* |a) by effecting on the disk associated with |a) an
affinity transformation on the x-axis with amplitude e”, and an affinity transformation on the
y-axis with amplitude e~ ". The circle associated with the state |a) is thus transformed into
an ellipse with major axis parallel to Ox and minor axis parallel to Oy.

8. GENERATION OF SQUEEZED STATES BY TWOQ-PHOTON INTERACTIONS

The purpose of this exercise is to show how it is theoretically possible
to generate squeezed states of the radiation field. For these states, the
dispersions of two quadrature components of the field are different, and
their product is equal to the minimal value compatible with the Heisen-
berg relations. (It is recommended that the reader have previously worked
through Exercises 6 and 7.)

Consider a mode ke of the electromagnetic field with frequency w
whose Hamiltonian H is given by

H = liwa®a + ihiA(a™? e 2ot — g% 2ivY) (H

where a* and a are the creation and annihilation operators of the mode.



D ;-8 Exercises 249

The first term of (1) is the energy of the mode for the free field. The
second describes a two-photon interaction process such as parametric
amplification (a classical wave of frequency 2w generating two photons
with frequency w). A is a real quantity characterizing the strength of the
interaction.

a) Write, using the Heisenberg point of view, the equation of motion
for a(t). Take

a(t) = b(tr)ye ', "))

What are the equations of motion for b(¢) and b*(2)?

b) Using the Heisenberg picture, the contribution of the mode ke to
the electric field is written

E(r, 1) = i&, e[a(r) e*" — a*(r) e *r] 3)
where a(t) is the solution of the equation studied in ). Show that

bty + b (1)

bp(1) = >

(1) — b (1)
—S—— (@b

(4.2); bQ(t) = 3
[where b(t) is defined in (2)] represent physically two quadrature compo-
nents of the field. Find the equations of motion of b,(z) and by(1) and
give their solutions, assuming that b,(0) and b,(0) are known.

¢) Assume that at ¢ = 0, the electromagnetic field is in the vacuum
state. Calculate at time ¢ the mean number of photons, (N ), in the mode
ke as well as the dispersions Abp(7) and Aby(¢) on the two quadrature
components of the field. Explain the result.

Solution

a) The Heisenberg equation for a,

1ha = [a. H] (5.a)
is written using (1) as
iha = hwa + 2 ik Aa™ e 2t (5.b)
a= —iwa +2Aat e 2, 5.0)
With the change of variables (2), equation (5.c) becomes
h=2Ab" (6.2)
and the adjoint equation is written
pt =2 Ab. (6.b)

b) We get a(t) and a” (1) as functions of h(¢) and b”(¢) using (2) and the adjoint
equation, and then as functions of b,(¢) and bo(1) by means of (4.a) and (4.b). Finally we
substitute these values into Equation (3) for E(r, r). A calculation similar to that in Exercise
6 gives

E(r,1) = — 26, e[hp(t)sin(k - v — wt) + by(r)cos{k + 1 — w1)] 3)
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which shows that b,(t) and hy(t) represent two quadrature components of the field whose
amplitude varies over time as a result of the parametric interaction described by the last term
of (1).

Using the equations of motion (6) for h(r) and b* () and the definitions (4), we get

bp(1) = 2 Aby(t) (7.2): bo(t) = — 2 Aby(1) (7.b)
whose solution is
bu(1) = bp(0) 2 (8.a); bol1) = bo(0) e (8.b)
¢) The number of photons in the mode ke is given by the operator
N(t) = a™ (1) a(t) = br(r) 1) . ©)

By inverting the relations (4) one can get b(r) and b* (1) as functions of bp(#) and by(1). so
that using (8.a) and (8.b), we have

b(r) = bp(0) et + ibQ(O)e’“’ (10.a)
b* (1) = bp(0) e** — iby(0) ™ (10.b)
b(1) = b(0)cosh At + b™ (0) sinh At (11.a)
b* (1) = b(0)sinh Ar + b™ (0) cosh Ar. (11.b)

We see then, since h(0) = «(0), that
N(t) = [a* (0)cosh At + a(0)sinh At]}[a(0)cosh At + a”(0)sinh Ac]  (12)

whose mean value in the vacuum is

(N(1)) = sinh® Ar. (13)
The equation for the electric field E at ¢ is derived from (3") and (8):
E(r.0) = — 26, e[h0) X sin(k - t — wr) + by(0)e > cos(k - r — wn]. (14

It appears then that the effect of the parametric interaction is to increase one component of
the electric field and to decrease the quadrature component. More precisely, from (8.a) and
(8.b),

(Abp(1))> = CO | B20) | 0> e — (0] hp(0) |0 )7 e : (15.a)
(Abg(1)? = < 0| b3(0) |0 ) e ** — (0] bg(0) |0 yre w4 (15.b)
Using (4), we find then
24t - 241
Abp(t) = 92— (16.2): Aby(t) = & . (16.b)

This shows that the uncertainty in one of the field components, here b, can be made very
small. This result is achieved at the expense of the quadrature component, in agreement with
the Heisenberg relationship Abp Ab, > § (see Exercise 6). Note that the result corresponds
to the minimum of this uncertainty. Note also that this compression of uncertainty in one of
the field components is accompanied by an increase in the mean number of photons (13).

9, QUASI-PROBABILITY DENSITY OF A SQUEEZED STATE

The purpose of this exercise is to calculate, for a squeezed state of the
radiation field, the characteristic functions and the quasi-probability den-
sities for both normal and antinormal order. To do so here one must have
previously worked Exercises 5 and 7.

a) Consider a mode of the radiation field, and let |0) be the vacuum
state of this mode. One can construct a squeezed state by causing the
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operator e ® to act on |0), where B = r(a? - a*?)/2, r being a real
number and a4 and a* the annihilation and creation operators of the
mode. The density operator for the field is then

p=re"105<0]e" (h

Find for this field the characteristic functions C, (A, A*) and C,(A, A*)
respectively related to the normal and antinormal order and introduced in
Exercise 5. One can use the Glauber equation

e¥ el — X+ 1) alx.¥)2 )

valid when X and Y commute with [ X, Y.

b) Calculate the quasi-probability density P,(«, a*) associated with
such a radiation state. Give P,(a, a*) as a function of the real and
imaginary parts, a, and a,, of a.

Can one find a quasi-probability density P, (a, a*) for this state?

Solution

a) Starting with the definition of C, (X, A*) given in Exercise 5 (Equation 1) and
introducing the density operator p as given in (1), we get
Culd A*) = Tr{e B0 (0lebet* e #9), 3)
Using the cyclic property of the trace and introducing e #¢® = 1 between €4’ and e 24,
we obtain
Cyl7a %) = Tr(|0 > < 0P et e BeBe *eB)
=(0|efe' e Pefe e B0y, (4)
Equations (9) and (10) from Exercise 7 give then
eBerd” o= B — oMu' coshriasinhr) (5_3)

At
eBe)\ue B

=e A*(acoshr+a "’ sinhr) (Sb)

so that (4) can be written
CN()\. }\*) - <0| era” coshr+usinhr)e*)\"(ucowhr+a‘ Ainhr)|0>A (6)

Denote by e and e’ the operators on the right-hand sides of (5.a) and (5.b). The
commutator [ X, Y] is a ¢-number equal to

[X.Y] = —|A|*(cosh? r[a*, a] + sinh? r[a, at]) = |A)? @)
which allows one to use the Glauber relation and to transform (6) into
CN()M )\*) - e|)\|z/2<0| e[a'()\co.shrf)\*.\inh rY+ a(X sinh r— A* cosh r)]‘()). (8)

Using the Glauber relation again to separate the exponentials containing a* from those
containing a, we have
e[u “{Acosh r—A*sinh r)+a(A sinh r—A*cosh r)] — ea‘ (A cosh r—A*sinh r)

Xeu()\ sinh r—A*cosh r)e*|7\|2(\:05h2 r+sinh? r)/2

Xe()\z +A*2)cosh rsinh r)/2 (9)
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and substituting this in (8), we find then

CN(X, }\,,) = |)\|2sinh2re()\ZJr}\‘z)(co.\hrsinhr)/Z (10)

since
eu()\smhr—)\'coshr)|0> =10 (11.a)
<Ol eu*()\coshrrk‘sinhr) —- <0| (llb)

Equation (13) of Exercise (5) allows one to obtain C,(A, A*) as

Co(A M%) = Cy (N A%)e M
- e"IMZ cosh? r C(AZ+>\‘~’)(cmhmmh /2 (12)

b) We have shown in Exercise 5 that P, and C, are related by a Fourier transform

1 n
P (o 0%) = ?fdu C (4, Axy el i (13.a)

The notation (5.a) and (5.b) of Exercise 5 allows us to rewrite (13.a) in the form
1 . )
Py 2*) = 472 Jd“ de C (4, A*) e'P¥ giret (13.b)

where C,(A, A*) comes from (12):

u? + p? ur - *
Cy(A, N*) = exp| — 2 cosh? r fexp| — 3 cosh r sinh r)

2 o
= exp( iy cosh r (cosh r + sinh r))exp( by cosh r (cosh r — sinh r))

exp(—%(l + ez’))exp(A%(l + e’z'))4 (14)

It is then necessary to find the Fourier transform of two Gaussian functions of different
widths. We get
2

P (o, o*) = A0+ e 5 e ]2 expl— 2 2341 + )] exp[ — 2 2341 + e~ ] (15)

that is, a product of two Gaussians of very different widths in «, and a,, which reflects the
different behavior of the two quadrature components of the field (see Exercise 7).
The same calculation in the case of Cy (A, A*) leads to

L u? 2
Cy(4, i%) = exp[?(] — ez’)—’exp[§(l - e’z')—’. (16)

It is clear that, for r # 0, one of the components of Cy (A, A*) diverges exponentially at
infinity. Finding the Fourier transform is then impossible. This state of the field does not
have a P-representation.

To understand this point, one can note that the state |0) is represented by a quasi-
probability density Py (a, a*) which is a Dirac distribution 8@(a). A state for which Agp, =
Aag, =} is thus represented by a point distribution. For the squeezed state considered here,
one reduces the uncertainty on one of the field components. Along this direction, the
quasi-probability distribution should be narrower than for the state |0). This is clearly
impossible starting from a point distribution. On the other hand, in the case corresponding
to the antinormal order, the state |0) is represented by a Gaussian distribution whose width

can be reduced.



CHAPTER IV

Other Equivalent Formulations
of Electrodynamics

In the preceding chapters, and especially in Chapter II, we have
followed the simplest possible procedure to construct quantum electrody-
namics. Starting with the standard Lagrangian, we eliminated the scalar
potential by expressing it as a function of the other dynamical variables;
then we chose the Coulomb gauge, which sets the longitudinal vector
potential A, equal to zero. This formalism can then be used in any
situation provided that the particle velocities and the frequencies of the
fields remain in the nonrelativistic domain.

It is clear however that such a description is not the only one possible.
One can formulate others, equivalent with respect to their physical predic-
tions but formally different. Generally, the aim is to obtain a new
formulation in which a given problem can be treated more easily than in
the standard formulation. The purpose of this chapter is to present and
examine examples of such developments (*).

We begin in Part A by reviewing several methods which can be utilized
to construct alternative descriptions of electrodynamics. A first possibility
is to choose a different gauge and take A different from zero. One can
also add to the standard Lagrangian in the Coulomb gauge the derivative
with respect to time of a function of the generalized coordinates of the
system. The new Lagrangian is equivalent to the old and gives the same
equations of motion. However, the new conjugate momenta are in general
different from the old, and when one applies the canonical quantization
procedure, the same mathematical operators in the new description repre-
sent in general different physical variables. The relationship between the

(*) Here we will not consider the formulation of electrodynamics in the Lorentz gauge,
since that is the subject of Chapter V.

253
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two points of view will be studied in detail, and we will show that the two
quantum representations can be derived from one another by a unirary
transformation. The gauge change discussed above is, in fact, only one
special case of this type of transformation. One can finally get a new
description of electrodynamics by applying to the standard representation
in the Coulomb gauge a unitary transformation more general than those
leading to an equivalent Lagrangian. Such a method is more powerful
than that above, in the same way that, in classical mechanics, canonical
transformations are more general than those changing the Lagrangian.

We then treat, in Part B, several simple examples of such transforma-
tions applied to the case of a system of localized charges, like an atom or
molecule, interacting with a long-wavelength external electromagnetic
wave. We first consider a simple gauge change, and then introduce the
Goppert-Mayer transformation which allows one to go from the standard
point of view, where the interaction Hamiltonian between the system of
charges and the field is proportional to A - p, to the electric dipole point of
view where the interaction Hamiltonian is proportional to E - r. The
equivalence between the two descriptions will be discussed once more, in
view of the practical importance of this transformation. We present also in
Part B an example of a transformation of the Hamiltonian which is not
equivalent to a change in the Lagrangian: the Henneberger transforma-
tion, which is used to study some interaction processes with intense
electromagnetic waves.

In Part C, we return to the general case where the electromagnetic field
is considered, not as an external field with a given time dependence, but as
a dynamical system coupled to the particles. We present the Power—
Zienau-Woolley transformation, which generalizes the Goppert-Mayer
transformation and gives, for the interaction Hamiltonian between the
system of charges and the field, the complete multipole expansion in a
compact form. The system of charges is described by a polarization and
magnetization density, and the displacement appears naturally as the
momentum conjugate with the transverse vector potential.

We finally study, in Part D, how the equivalence between two points of
view derived from one another by a unitary transformation manifests
itself in the scattering S-matrix. We show that the equality of the transi-
tion amplitudes takes, in this case, a simpler form, since the same kets can
be used to describe the initial and final states in the two approaches. This
property of the S-matrix explains the current practice of attributing
(wrongly) the same physical meaning to the “unperturbed” Hamiltonian
whatever the point of view used.
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A—HOW TO GET OTHER EQUIVALENT FORMULATIONS
OF ELECTRODYNAMICS

In this part we review different methods which can be used to get
formulations of electrodynamics equivalent to those of Chapters II and
[II. The emphasis here will be on the correspondence between the differ-
ent descriptions and on the equivalence of the associated quantum theo-
ries.

1. Change of Gauge and of Lagrangian

We briefly review the arguments followed in Chapter II. Since the
standard Lagrangian does not depend on the velocity % relative to the
scalar potential %, Lagrange’s equation relative to % leads to a relation-
ship {(C.1) of Chapter 1I]

L., :
U = p[lk&i' + Sﬁo} (A.1)
which allows one to reformulate % as a function of the other dynamical
variables. When % has been eliminated, the standard Lagrangian will only
depend onr,, f,, &, , &, , &, and &, and can be expressed in the
form

* . .
L = Z%mzrf — {d3k8£7[; + & :fd”([ﬂf T 2 k2 AR AR
x 0

+ Jd%[,‘* vl 4 A+
+ fd%[j"; A+ A= 7 p* sty — p,s%‘]*)}. (A.2)

We then found that < is not a true dynamical variable, in the sense
that the associated Lagrange equation is not an equation of motion for
, (*), which can then take any value. The choice of the Coulomb gauge,
/= 0, appears then to be the simplest possible, but it is not necessary. It
is always possible at this stage to set 2/, # 0 [this also changes the scalar
potential according to (A.1)] and to continue the procedure of canonical
quantization. One can, for example, take &/ as an arbitrary function of k
and ¢, which can also eventually depend on the other true dynamical

(*) In fact, this Lagrange equation is nothing more than the equation for the conservation
of charge, which adds nothing new, since it follows directly from the definition of p and j as
functions of the dynamical variables r, and f, of the particles.
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variables of the system, r, and &/, (*). The consequences of this choice
can now be foreseen: since f, appears in the last term of (A.2) through 1
and possibly /|, the conjugate momentum of r, will be modified. If 2
depends on &7 , so will the momentum conjugate with &7, (k).

Another way of understanding why .27, is not a true dynamical variable
involves noting, as in §C.1.h of Chapter II, that the last term of (A.2)

where #/; and ,Q?” appear can also be written as the total time derivative

of the function
_ p* p
F _de3k [E o) — A ,d!*J. (A.3)

Thus going from the Coulomb gauge to another gauge is an illustration of
the general law which allows one to go from one Lagrangian to an
equivalent Lagrangian by adding the total time derivative of a function of
the generalized coordinates. We are now going to examine how such
transformations are expressed in quantum theory and to show that they
amount to applying a unitary transformation to the initial quantum
representation.

2. Changes of Lagrangian and the Associated Unitary Transformation

Such a problem is not specific to the system (electromagnetic field +
charged particles). We are going to study a much simpler system with one
degree of freedom on the x-axis and later generalize the results gotten
there. The interest of such a simple case is that we can use unambiguous
notation. Later we will return to more compact notation.

Let L(x, x) be a Lagrangian describing the dynamics of the system.
Since we will introduce other Lagrangians hereafter, we take the precau-
tion of denoting by p, the momentum conjugate with x with respect to
the Lagrangian L:

~
L
pL=—. (A.4)

Cx

It is a quantity which is expressed as a function of x and x. The equation
of motion is Lagrange’s equation

. _dfeL\ oL

Cx

(*) In contrast, &/, cannot depend on the velocies f, and &7, , since that would cause
the accelerations to appear in the Lagrangian (A.2).
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a) CHANGING THE LAGRANGIAN

By adding to L the time derivative of a function F(x, 1), one gets a new
Lagrangian

L'(x, X) = L(x, ) + % F(x, 1)

. CF CF
=Lﬁ¥)+xc + (A.6)
x ct
equivalent to L in the sense that it gives for x the same equation of
motion as (A.5) (see §A.1.c of Chapter II). The momentum conjugate with
x with respect to the new Lagrangian L' is
cL”  ¢L  ¢F
Pr= = (A7)

x  ox Ox
The expression for p,. as a function of x and % is different from that for
p.- Going from a Lagrangian L to an equivalent Lagrangian L’ has as a
consequence a change in the momentum conjugate with x. The old and
new conjugate momenta are two functions of x and % which are related
by

CF
pL/:pl‘_‘—(ﬁ'—,\" (A.8)

A single dynamical state of the system, characterized by given values of x
and x, will then be described by different values of the conjugate mo-
menta p, and p,. related by (A.8). One can verify that, if this relationship
is true at one time, the dynamical equations assure that it will remain so.

The physical variables of the system are functions of x and x. Their
values depend only on the dynamical state of the system characterized by
x and x. Consider one such variable, for example the kinetic energy,
described by the function %(x, x). In the Hamiltonian formalism, one
uses x and the conjugate momentum p, as dynamical variables. The
value of the physical variable ¢ will be a function G, (x, p,). The index L
reminds us that this function depends on the Lagrangian which has been
used to define p,. The value of G; when one replaces p, by its expression
(A.4) should coincide with €(x, %):

G,_(x f—f) 4(x, x) (A.9)

which completely fixes G,. For the new Lagrangian L', G,. is different
from G, and (A.9) is written

G,(,,%i> = G(x. ¥). (A.10)
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Equations (A.8), (A.9), and (A.10) then give quite simply the relationship
between G, and G,.,

oF
GL,<x, pL + E) = Gux, pL). (A.1D)

This equation assures that for the same dynamical state, the values of
G,(x, p;) and G,(x, p,) are identical, p, and p,. being related by
(A.8). The physical predictions with regard to & are the same from both
points of view.

Consider now the Hamiltonian. Its form, as a function of x and p,.,
depends on the Lagrangian chosen. Furthermore, its value for a given
dynamical state is not necessarily identical in the two descriptions, since

. .. oF .0F @F
Hi(x,p)=xp. — L = X<pL + 67) - (L tx—+ 7)

¢F
= H(x,p) — K (A.12)
where p;. and p, are related by (A.8). It appears then that the Hamilto-
nian behaves like a physical quantity only when F is time independent

[compare (A.12) and (A.11)].

b) THE TwO QUANTUM DESCRIPTIONS

When one applies the standard canonical quantization procedure start-
ing with L on the one hand and L’ on the other, one gets two quantum
descriptions for the system. To eliminate all ambiguity we will use
superscript indices (1) for all the elements in the first case and (2) in the
second. Thus XV is the operator representing the “position” variable in
the first description, and |¢‘?) is the state vector representing the dynami-
cal state of the system in the second one. Finally, we introduce the two
fundamental mathematical operators, the operator “multiplication by x”
which we call X and the operator (k/i) d/3x which we call P:

X = x (A.13)
ho¢
=z . (A.14)

If one applies the standard canonical quantization procedure starting
with the Lagrangian L, one gets a first quantum description. The coordi-
nate x is represented by the operator “multiplication by x, and its
conjugate momentum p, by the operator (#/i) d/dx. One has then

XW=x (A.15)
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P =p. (A.16)
The variable ¢ is represented by the observable
GV = G, (X, P) (A.17)
where G, is the function defined by (A.9). The Hamiltonian is
H[V = H(X, P). (A.18)

we have kept the index L for HY and P/} to remind ourselves that the
momentum conjugate with x and the Hamiltonian depend in the general
case on the Lagrangian from which they have been defined. The state of
the system at a given instant is represented by the state vector |¢).

Applying the same quantization procedure starting with L’, one gets a
second description of the system in which the coordinate is always
represented by the operator X, and the new conjugate momentum P,. by
the operator P;

X® =X (A.19)
PP =P. (A.20)
The physical variable ¢ is represented by
G* =G (X, P) (A.21)
where the function G;. is defined by (A.10). The new Hamiltonian H,. is
represented by
H®*» = H, (X, P). (A.22)
In general, the functions G, and G, are different, with the result that the

same physical quantity 9 is represented by different mathematical operators
in the two representations:

G % G?. (A.23)

Starting with the Lagrangian L or L', one is then led to descriptions of
the system observables which are different. In the same way, the state
vectors which describe a given state are not the same:

D> # 1™ (A.24)

Recall that it is the same classically: a given dynamical state of the system
1s represented by different values of p, and p,..

¢) THE CORRESPONDENCE BETWEEN THE TwWO QUANTUM DESCRIPTIONS

We are now going to examine the correspondence between the two
quantum descriptions. Clearly, the coordinate is represented by the same
operator [cf. (A.15) and (A.19)]. For the conjugate momenta, it is neces-
sary to recall that two have been introduced, p, and p,., and that they
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represent different physical variables, as can be seen from their functional
dependence on x and x. Thus we have to consider four operators: PY,
P®, PV, and P?. The first and the last are already known [Equations
(A.16) and (A.20)]. The other two can be derived from Equation (A.8)
between p,. and p,. If one expresses this in representation (1), for
example, one gets

cF JF

x - P tax

Py =pY 4 (A.25.a)

by using (A.16). In the same way, expressing (A.8) in representation (2)

and using (A.20), one gets the following equation for P

¢CF ¢F

x-P &
We can summarize the expressions for the operators representing the

different variables in the two representations as follows:

P = PP — (A.25.b)

— Representation (1): — Representation (2):

X=X (A.26.a) X®=x (A.27.a)
'F

PV =p (A.26.b) PP =P - f_x (A.27.b)

PV =P+ E—; (A.26.c) PY =P (A27.¢)

Comparison of the two representations suggests that passing from one to
the other involves the unitary transformation

Tzexp%F(X) (A.28)

which amounts to translating P by an amount —dF/dX. It is indeed
possible to go from the expressions (A.26) for X, P{V, and PV to the
expressions (A.27) for X®, P{?, and P{? through the following rela-
tions:

X® = TXWO T (A.29.a)
P =TP"T" (A.29.b)
PP =TPPT" (A29.c)

where T is the unitary operator (A.28).

More generally, we can check that the transformation T establishes the
correspondence between the two representations G and G® of the same
physical variable ¢

G?P =TGV T (A.30)

G® and G® being defined by (A.17) and (A.21). The expression (A.11)
which relates the two functions G, and G,., can be written by replacing
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the classical variables x and p; with the operators X and P. One gets
then

GL(X, P+ é-;) = G, (X, P). (A.31)

Transforming both sides of this equation by T and applying the
transformation on the operators within the function appearing on the
left-hand side, one finds that X is unchanged and P + dF/9X is trans-
formed into P, so that

G.(X,P) = TGX,P)T" . (A.32)

Using (A.17) and (A.21), this reduces to (A.30). The representation (2) of
the system observables is gotten simply by applying the transformation T
to representation (1).

The state vectors are related by the same transformation

@S =Tly"). (A.33)

Indeed, if one imagines that the state of the system results from the
measurement of a variable ¢ (or a set of such variables), then [y®Y and
[¢@) are the eigenvectors respectively of GV and G® corresponding to
the same eigenvalue. From (A.30), this implies Equation (A.33). The
expressions (A.30) and (A.33) are then sufficient to assure the equality of
the mean values and of the measurement results in both approaches.

The temporal evolution of [¢) and |¢®) is governed respectively by
H{Y and H{?; the relationship between the two operators is not of the
type (A.30). Starting with (A.12) between the classical functions and
proceeding as for G, one finds that

H® = THO T+ —(P_f (A.34)

This is precisely the relationship which assures that equation (A.33)
between |{V) and |¢®) continues over time. Indeed, if one compares the
rate of change of |¢®) on one hand and of T|¢") on the other, one
finds

i Sy = B gy (A.35)
and
. d (1) — (1) 1) 3 d_T (1)
i Tl = THD 0 + (il 50 ) 1w

-~

:(THy)W %)TW‘“). (A.36)
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The two rates are equal on account of (A.33) and (A.34). Thus the
correspondence (A.33) between the two points of view is preserved over
time.

d) APPLICATION TO THE ELECTROMAGNETIC FIELD

The preceding considerations are easily generalized for a more complex
system and in particular for the case of the electromagnetic field interact-
ing with an ensemble of particles.

Now, each change in gauge (A # 0) or each transformation from the
Coulomb Lagrangian to an equivalent one is accompanied by a corre-
sponding change in quantum representation. With each of these transfor-
mations is associated a unitary transformation T of the form

T = exp% Flo®y s A, (K), i 1) (A.37)

where F is a function of the generalized coordinates of the system, r, and
&/ | (k), and possibly of time. To simplify the notation, we no longer use,
as in the preceding paragraph, different symbols for the generalized
coordinates (position r,, transverse vector potential &, (k), etc.) and the
corresponding operators.

All of the equations established in the preceding subsection and relat-
ing the system descriptions in one or the other points of view [Equations
(A.30), (A.33), and (A.34) relating G to GV, 4@ to |¢"), and HP
to H{"] remain valid provided that (A.28) is replaced by (A.37). We will
examine in detail hereafter specific examples of the transformations (A.37).
Beforehand, we introduce unitary transformations more general than
(A.37) and prove the equivalence between the transition amplitudes calcu-
lated from two viewpoints related by a unitary transformation.

3. The General Unitary Transformation. The Equivalence between the
Different Formulations of Quantum Electrodynamics

The unitary transformation 7 defined by (A.37) depends only on the
generalized coordinates. One can consider more general transformations
depending also on the conjugate momenta of the type (*)

T(t)=exp% Flon T,y oo d (), T(K), 1), (A.38)

The presence of the conjugate momenta in (A.38) implies that such a
transformation is not associated with a change of Lagrangian. It is applied

(*) For these calculations which follow, it is useful to use the notation T(7), showing that
T depends explicitly on ¢, if this is also the case for F.
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directly to the states and observables of the system in accordance with

WD > = T [y ™) > (A.39)
Gty = T()GV() T (1) (A.40)

which are analogous to (A.33) and (A.30). Note incidentally that the
presence of p, in (A.38) implies that the transformation 7(¢) does not
generally leave the coordinates invariant: from the new point of view, the
operator “multiplication by r,” no longer represents the position of the
particle, but some other physical variable.

Let HV(¢) be the Hamiltonian describing the temporal evolution from
point of view (1) (*). To get the Schrodinger equation satisfied by the
vector [$P(1)) related at each instant 7 to [$M()) by (A.39), it suffices
to take the derivative of each side of (A.39) with respect to ¢ and to use
the Schrodinger equation for [$1(1)). We get

gy = [ Sl 1 RO IETP

dT(z
[1 d( ) T+ T(HY) T (t)] [y () > . (A.4])
The Hamiltonian H® in approach (2) is thus written

H(1) = T(t) HY() T (1) + if dd( )T (A.42)

The simultaneous presence of the generalized coordinates and conjugate
momenta in the operator F of (A.38) implies that dF/d: does not
commute with F in general. That explains why the last term of (A.42)
cannot be written —dF/dt as in (A.34).

We will now establish an important relationship between the evolution
operators UM (1, 1) and UP(1, t,). Since (A.39) is valid regardless of ¢,
we can write

W) > = T 1Y) > = T() UMt 10) | PA1g) >
= T(1) UMt 1) T " (1) [ P15) >
= U1, 1) |y 15) > - (A.43)
It follows that
U1, ty) = T() UM, 1) T (1) - (A.44)

Such an expression together with (A.39) assures the identity of the
physical predictions in the two approaches. To show this, consider the

(*) Since the two descriptions (1) and (2) are no longer associated with two Lagrangians
L and L', there is no longer justification for using H, .
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probability amplitudes that the system, starting at ¢, in an initial state
described respectively by

| ™M (t0) > (A.45.2)
| o P15) > = T(15) | 9At0) > (A.45.b)

in the two representations, ends at time ¢ in a final state

| ) > (A .46 .2)
K20 > =T (0 . (A.46.b)

The equations (A.44), (A.45), and (A.46) insure the identity of the transi-
tion amplitudes calculated in the two representations:

CA() UL 1) | 9PA10) > = <D UM 1) | 0P (1g) > (A.47)

and thus the equality of the physical predictions. The identity (A.47)
established for the general unitary transformation (A.38) is of course also
valid for (A.37).

Thus, the equivalence of all the different descriptions of quantum
electrodynamics that one can construct using the procedures described in
this Part A is assured in a fundamental way by the existence of a unitary
transformation relating the various descriptions. :

The foregoing considerations concerning the equivalence of the various
descriptions can seem at first blush elementary and even superfluous. In
fact this is not the case. Their translation into a specific case is often far
from easy and can give rise to incorrect interpretations or to subtle errors.
It behooves one in each case to be certain what operators represent the
different physicai variables in one or the other of the representations and
to ascertain that the state vectors used to represent the system from the
two points of view describe the same physical state—for example, are
eigenstates of the same physical observable with the same eigenvalue (*).

Remarks

(i) The correspondence between the description of electrodynamics in the
Coulomb gauge and that which one gets by the covariant quantization de-
scribed in Chapter V is not so simple as that of the preceding unitary
transformations. In the covariant description, the electromagnetic field is de-
scribed with a larger number of degrees of freedom and the state space does not
have the same structure. We will return to this problem in Complement B,.

(ii) A subtle error can be introduced, for example, when one causes the system
to interact suddenly at ¢ = 0 with a field described by a potential. Causing a

(*) See for example the discussion presented in Y. Aharonov and C. K. Au. Phys. Lert.,
86A, 269 (1981).
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vector potential to change at 1 = 0 to a finite value is accompanied in fact by a
pulse of electric field. This pulse will be absent if one describes the electric field
by a scalar potential. Thus, one can have the impression that the calculation
carried out in two different gauges gives different results, when in fact the
reality of the situation is that the system was interacting with two different
clectric fields in the two cases. (An example of this is discussed in Exercise 1.)
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B— SIMPLE EXAMPLES DEALING WITH CHARGES
COUPLED TO AN EXTERNAL FIELD

Before considering transformations involving the ensemble field +
particles as a dynamical system, we will first examine the simplest situa-
tion relative to a system of charged particles localized about the coordi-
nate origin and interacting with an external electromagnetic wave. Such a
system can be, for example, an atom or a molecule. We begin (§B.1) by
recalling the expressions for the Lagrangian and the Hamiltonian for such
a system. We then illustrate the general considerations of Part A by means
of three examples: a simple gauge change which will allow us to state what
is meant by gauge invariance (§B.2), the Goppert-Mayer transformation,
which gives rise to the electric dipole interaction at the long-wavelength
limit (§B.3), and the Henneberger transformation, which is a unitary
transformation depending on the conjugate momenta (§B.4).

1. The Lagrangian and Hamiltonian of the System

The Lagrangian and Hamiltonian of a system of charges in the pres-
ence of an external field have been introduced in Complement Cy;.
Assume that the particles are sufficiently near to one another that the
Coulomb interaction is a very good approximation to their real interac-
tion. In the Lagrangian and Hamiltonian of the problem, it is then
possible to neglect the terms relative to the transverse free field and to the
interaction between the particles and the transverse field. In contrast, we
retain the coupling terms with the external field described by the poten-
tials

Ar, 1), U,(r1). (B.1)

The Lagrangian L and the Hamiltonian H, which are now functions of
the dynamical variables of the particles only, are written

1 . .
L=Y5mil = Veu + L1t Al ) = 4, Udr 0] (B.2)

1
HL = z i—m_ [paL — 4, Ae(rzv t)]z + VCouI + Z q, Ue(rz’ t) . (B3)

The conjugate momentum p,,; of r, is given by

P = M, T, + g, AT, 1), (B.4)

In quantum theory, the fundamental operators satisfying the canonical
commutation relations are r, and p, = — i# V_.In the standard quantum
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representation developed starting with L, which we call (1) and which will
serve as our reference, the operator representing the position of particle a
is

) =r, (B.5)

and the one representing its conjugate momentum p,, is

i
Py =P, = - =V (B.6)

The Hamiltonian operator is gotten by replacing in (B.3) the quantities r,
and p,;, with the corresponding operators (B.5) and (B.6). By separating
the “particle Hamiltonian” and “interaction Hamiltonian”, one gets

HY = HY + pY (B.7)
2

PlL) = Z 2 m + Veoul--s o) (B.8)

2
hﬁ=2[—%m~ﬂm0+%§ﬁmw+%Uﬁuﬂ-(R%

x a

We are now going to consider other descriptions of the same system
constructed using the methods of Part A.

2. Simple Gauge Change; Gauge Invariance

Consider initially the gauge transformation defined by the function
x(r,7) which depends only on r and 7. The external field is now described
by

Alr 1) = Afr 1) + Vy(r, 1) (B.10a)

U/ 1) = Ur 1) = 5 2(0r, ). (B.10b)

a) THE NEw DESCRIPTION

The new Lagrangian is written
1. . , ,
= z imz l'f - VCoul + z [qaz r,* Ae(rz’ 1 — q, Ue(raw [)]

:L+%[§:‘11 X(ra,t)]. (B.11)

The new conjugate momenta defined by
paL’ = ma l'.az + qa( A;(rzv t) = paL + qa V;{(l’a, I) (B 12)

are different from the old. The Hamiltonian H,. has a form similar to H,
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in which p,; , A, and U, are replaced respectively by p,,., A’,, and U,".

In the new quantum representation, the posmon of the partlcle is
always represented by r,, and p,,. by p, = — ihV,

P =r, (B.13.a)

P = Pa (B.13.b)

The new Hamiltonian operator is then
H? = HP + W3 (B.14.a)
2

Hp = 22 + Vel T +o0) (B.14.b)

2

q. , 9y
h;ZL), = z [_ %;pa : Ae(rzv t) + i—rn_a

X

A/ez(rz’ l) + qz Ué(raa t):| .
(B.14.c)

b) THE UNITARY TRANSFORMATION RELATING THE TWO
DESCRIPTIONS— GAUGE INVARIANCE (*¥)

From (B.11), the new Lagrangian L’ differs from the old by a total
derivative. The treatment in §A.2 above shows then that one passes from
representation (1) to representation (2) by a unitary transformation

T = exp% Y g, x(r,. ). (B.15)

Thus, if ¢'U(...,r,...) is the wave function representing the particle
state in the first representation, this same state is represented in the new
description by

YA, ) = g, ) exp% S g, 1. 0. (B.16)

The operators representing the same physical variable in the two
descriptions are also connected by T. Consider for example the velocity of
particle a. Following (B.4) and (B.6),

(1) = pZ 2 Ae(ra’ [) - p1 - (11 AL’(rfl’ ’) : (B 17)
Similarly
m, v = pi — q, Aur,, 1) = p, — g, A(r,. 1) — ¢4, Vy(r,, 1) (B.18)
and one sees then that

J=Tv T (B.19)

(*) Cohen-Tannoudji, Diu, and Laloe, Complement H;,.
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In contrast, the situation is different for the Hamiltonians
H® = THOT* — z‘“a% e, 1) (B.20)

In the same way, H{) and HS. or h{}Y and h{}. are not related by T.
Thus, the operator

2

P:
sz + VCoul("'argm-'-) (le)

called the particle Hamiltonian H{Y or H?., as in (B.8) or (B.14.b), does
not represent the same physical quantity in the two descriptions. An
eigenstate of this operator does not describe the same physical state in the
two representations. Furthermore, the particle Hamiltonian (B.21) gener-
ally does not coincide with the proper energy of the particles defined as
the sum of their kinetic and mutual potential energy, since the operator
p./m, in general does not describe the velocity of the particle [see (B.17)
and (B.18)].

Note finally that the general demonstration of §A.3 above concerning
the equivalence of physical predictions applies here. Since the gauge
change is described in quantum theory by a unitary transformation, the
transition amplitudes calculated using the gauge (A, U,) and the gauge
(A’,, U,) are identical [see (A.47)]. It is of course necessary that the kets
describing the initial and final states in either gauge correspond to one
another by the unitary transformation (B.15) [see (A.45) and (A.46)]. The
fact that the transition amplitudes, and as a result all the physical
predictions, are the same regardless of gauge reflects the gauge invariance
of quantum electrodynamics.

3. The Goppert-Mayer Transformation (*)
a) THE LONG-WAVELENGTH APPROXIMATION

Assume that the charges g, localized near the origin, form a globally
neutral system

Ya, =0 (B.22)
x
whose spatial extent a is small with respect to the distance characterizing
the spatial variations of A, and U, (for example, the wavelength for
incident radiation). In Equation (B.2) for the Lagrangian one can then
expand the potentials A (r,, 1) and U,((r,, r) in powers of r,. which gives
rise to the multipole moments of increasing order for the system of

(*) M. Goppert-Mayer, Ann. Phys., (Leipzig) 9. 273 (193],
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charges with respect to the origin. The electric dipole approximation
consists of retaining only the lowest-order terms, which can be expressed
in terms of the electric dipole moment with respect to the origin:

d=>gq,r,. (B.23)
With this approximation, the Lagrangian (B.2) is written using (B.22) as

1. .
L=Y3mi; = Ve +d-A0.0) —d-VUL0,1). (B.24)

One then gets for the momentum conjugate with r,

-~

L )
P = g— = m,t, + q, A0, 1) (B.25)

X

and for the Hamiltonian

HL:zpaL'i'a_L

1
= z m [paL Yy Ae(Ov t):lz + VCouI + d- VUe(O’ [) : (B26)

b) GaUGE CHANGE GIVING RISE TO THE ELECTRIC DIPOLE INTERACTION

We select now a new gauge A’,, U, . The new expressions for L', p,,.,
and H,. are gotten by replacing A (0, ¢) with A’,(0, 1) and VU (0, 1) with
VU0, t) in (B.24), (B.25), and (B.26). The Goppert-Mayer transforma-
tion seeks to get A%(0,7) = 0, so as to simplify as far as possible the
expression for p,,. and thereby that of the first term of H,.. For this, one
uses the gauge change defined by

ur,ty = —r- A0, 1) (B.27)

or, which amounts to the same thing, the change in Lagrangian gotten by
adding to (B.24) the total derivative

d d
4 [_ Y4t A t)} = $l-d-A0n].  (B.2Y)

The new potentials A’, and U,, using (B.10) and (B.27), are

Ar, 1) = A, 1) — A0, 1) (B.29.a)
Ulr.t) = U r, 1) + 1+ A[0, 1) (B.29.b)
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which yields
A0, 1) =0 (B.30.a)
VU0, 1) = VU0, 1) + A0,1) = — E(0,1) (B.30.b)

where E_(0, ¢) is the total external field at 0. It is sufficient then to
substitute (B.30) in Equations (B.24), (B.25), and (B.26), written in the
new gauge, to get

1

L= Zima 12— Vg +d - E(0,0) (B.31)

sz’ = maz i.az (B32)
2

H, = z%’ b Vey — d-E(0, 1), (B.33)

Beyond their simpler form, Equations (B.31) and (B.33) have the advan-
tage of making explicit the electric dipole interaction between d and E,.

In quantum theory, the transition from the usual description (1) to the
Goppert-Mayer description (2) is realized, according to (A.28) and (B.28),
by the unitary transformation

i

T(1) = exp{ 7 d- A0 1)} = exp{—%Zqzrz- A0, t)}_ (B.34)

It is indeed possible to study directly the effect of the unitary transforma-
tion (B.34) on the initial representation. This is done in Complement A |y
in order to introduce the electric dipole Hamiltonian in an elementary way
without using the Lagrangian formalism.

¢) THE ADVANTAGES OF THE NEW POINT OF VIEW

In the new representation, the operator p, = —i%# V, describes the
variable p_;. given in (B.32), that is, the mechanical momentum of the
particle. It follows then that the particle Hamiltonian H), given in
(B.14.b) truly represents in this new description the energy of the particle
system, that is, the sum of the kinetic and Coulomb energies. As a conse-
quence, the eigenstates |@,) of HS?. with eigenvalue E, are now the
physical states where the energy of the particles has a well-defined value
E,. The amplitudes

Cop | UPAtps 1) | @, > (B.35)

are the transition amplitudes between an initial state with energy E, at
time 7, and a final state with energy E, at ;. Note finally that the
calculation of U®(4, t,) uses the interaction Hamiltonian in representa-
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tion (2),
hizh = —d-E(0,1) (B.36.a)

which is much simpler than the one in representation (1), which, using
(B.26), is written
2

e Z%m - A0 1) + qu,;_z‘”‘ﬁ(o* N +d-VU(0, 1) (B.36.b)

h'?., which reduces to a single term, is linear in the fields; it depends only
on the field E, and not on the potentials.

It clearly appears then that the calculations are much simpler and more
direct in the new representation. It should not be forgotten however that,
if they are approached correctly, the calculations should lead to the same
results in both representations. Given the practical importance of the
interaction Hamiltonians A - p and E - r, we will discuss their equivalence
in detail.

d) THE EQUIVALENCE BETWEEN THE INTERACTION HAMILTONIANS A - p
ANDE - r

1) The Simple Case Where the Potentials are Zero at the Initial and
Final Times

Assume initially that the potentials A (0, 1) and U,(0, ) are zero at the
initial time ¢, and final time ¢,. This must also be the case for the field
E_ (0. 7). Such a situation arises for example when a wave packet impinges
on an atom, the times ¢, and 7, being respectively before and after the
packet passes the origin. J

Since A (0, 1) is zero for 1 = ¢, and ¢ = t;, 1t follows from (B.34) that

T(10) = T(ty) = 1. (B.37)
The vanishing of A (0. ¢,) and A (0, 1,) entails likewise that p,, coincides
at t =1, and ¢ = t, with the mechanical momentum of particle « [see
(B.25)], so that the eigenstates |@,) and |@,) of HS) [see (B.8)] represent
at t =1, and 1 = 1, states with well-defined total energies E, and E, in
representation (1). It follows that the transition amplitude between an
initial energy state E, at 1 = ¢, and a final energy state E, at 1 =1, can
be written in representation (1) as

Cop Ut 10) [ 00> (B.38)

Indeed, the equality between the two amplitudes (B.35) and (B.38) follows
directly from (A.44) and (B.37).

It is also possible to verify the equality of the amplitudes (B.35) and
(B.38) directly through an explicit calculation. This is done in Comple-
ment B;, for one- and two-photon processes induced by a nearly
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monochromatic wave packet whose time of passage T tends to infinity.
The amplitudes (B.35) and (B.38), evaluated in the interaction representa-
tion with respect to the particle Hamiltonian, are then elements of the
scattering S-matrix. The problem of the equivalence of the scattering
S-matrices in two representations related by a unitary transformation is
reexamined in Part D of this chapter, the radiation field being no longer
treated as an external field but as a quantum-dynamical system.

1) The General Case

If A (0, 7) is not zero at ¢, and ¢, the equation (B.38) for the transition
amplitude is no longer correct, since the states |¢,) and |p,) no longer
represent well-defined energy states in representation (1), and p,, differs
from the mechanical momentum m i, when A, is nonzero. In contrast.
since |¢,) and |p,) always represent the energy states £, and E, in
representation (2), it is always possible, whether A, is zero or not [see
(B.32) and (B.33)], to get the corresponding states in representation (1) by
means of the transformations T7(¢,) and T (1;) which transform from
(2) to (1). The initial and final states are then written in (1) as

{ Ly W) > = T ) Lo, > (B.39.a)

L) > =T i) @y (B.39.b)
and the transition amplitude in this description becomes

<o, | T(tf) Um(’_ﬁ lo) T+([0) | V. =
_ < 0, exp{— %d - A0, r,)} UM, 1) exp { % d- A0, 1) } l 0, )
(B.40)

One should not make the mistake of omitting the two exponentials in
(B.40).

The equality between the amplitudes (B.35) and (B.40) follows from the
general property (A.47) established above. It is also possible to verify this
equality directly by explicitly calculating the amplitudes, for example to a
given order in g,. The interested reader will find an example of such a
calculation in §B.3.4.1i1 below.

\

iii) Direct Verification of the Equality of the Two Transition Amplitudes to
First Order

We will expand the two exponentials of (B.40) in powers of ¢, and use
the well-known perturbation expansion of the operator U associated with
HY,

1 (v
Ultp. tg) = Uglty, 1) + EJ Uolty. ) V(©) Uglt. 1) dr + - (B.41)

O



274 Other Equivalent Formulations of Electrodynamics IV.B.3

where U, is the unperturbed evolution operator associated with H}} and
V(t) is the “perturbation” h{) given by (B.36.b). To order 1 in g, (B.40)
is written

YA | Uy, 1) Y 0tg) > = Gy, e =T 4
1 . . _
+ E< ®, |d . AE(O’ lf) e i@alty~t0) _ gionlty—to) g . Ae(()’ ZO) | (pa> +

1y
+ %e*i((ubrf—waro) J df efi(uabr %
1

to
x <‘Pb Z

where w, = E /A, w, = E,/h, and w,, = w, — w,. An analogous calcula-
tion gives for the amplitude (B.35), with V(¢) being now replaced in (B.41)

by the Hamiltonian 4!, given in (B.36.a),

“p,A0, 1) +d- VU0, 7) |0, > + - (B.42.a)

4q
m

a

< (pb \ U(Z)(tf‘ IO) ; (pu > X~ éhd efiwa(rfﬁlo) +

1 . g 4
+ HA g Howly~wato) J dre™ 9" ( o, | —d-E 0, 1) | @,y (B.42.b)
tg

We can now replace the matrix element for p, by that of r_ in (B.42.a),
thanks to the algebraic relationship

(o

obtained by taking the matrix elements between |¢,) and |@,) of the
identity

Py

m

(pu> = iwba<(pblra|(pa> (B43)

X

Ir,, ) = in = = i B (B.44)

X ml

We also integrate by parts the term in p, - A (0, 7) of (B.42.a) to get Ae.
The integrated terms cancel exactly the second line of (B.42.a) and the
remaining terms coincide exactly with (B.42.b). Thus we have demon-
strated the identity of the amplitudes (B.35) and (B.40) to first order in g,
Similar relationships exist between the matrix elements to all orders.

¢) GENERALIZATIONS

The transformation presented in §B.3.a can be generalized in two ways.
It is possible first of all to introduce an analogous transformation for the
long-wavelength modes of the transverse field taken together as a dynami-
cal system; the function x depends then on the field variables, and the
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transformation modifies the momenta conjugate with the field. One such
approach is presented in detail in Complement A .

One can also try to get rid of the long-wavelength approximation and
seek a gauge transformation which eliminates A in favor of the electric
and magnetic fields. We will see in Part C of this chapter that such an
objective can be attained by means of a change in the Lagrangian. We will
also see in Complement Dy that such a change in the Lagrangian is in
certain cases equivalent to a change of gauge characterized by the function

1
xWr) = — J r- A (ru)du (B.45)

0

which generalizes (B.27).

4. A Transformation Which Does Not Reduce to a Change of Lagrangian:
The Henneberger Transformation (*)

a) MOTIVATION

One of the advantages of the Goppert-Mayer transformation is to
establish between the velocity of a particle and the momentum conjugate
with its coordinate a simpler relationship than in the standard description,
as the result of a change in the conjugate momentum. One can reach this
same objective by changing the particle “coordinate”. More precisely, we
will look for the quantity R, whose velocity is p,/m, in the standard
classical description. We still assume that the particles are localized near
the origin and that the long-wavelength approximation applies. Equation
(B.4) then becomes

m, R, = m, b, + q, A0, 1). (B.46)

If one introduces the new potential Z (r, t) defined by

t
Z(r1)=— J dr A (r, 1) (B.47)
the expression for R, then becomes
R, =r, - &) (B.48.a)
with
&, (1) = % Z,0,1). (B.48.b)

(*) W. C. Henneberger, Phys. Rev. Ler., 21, 838 (1968).
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The physical meaning of R, is simple: if the particle is subject only to
the action of the electric field derived from A (0, 7), its equation of motion
will be

m, ¥, = — q, A0, 1) (B.49)
and one has then
mR, =0, (B.50)

The quantity R, will then describe the motion of a free particle. If A,
corresponds to an oscillating field, R represents a kind of “mean posi-
tion” about which the particle executes a forced oscillatory motion de-
scribed by £,(¢). In the presence of other forces created by U, and the
interaction V., between the particles, the motion of R_ will not be so
simple. However, if the action of A, is dominant, the choice of R, as a
dynamical variable is advantageous, since it already takes account of the
particle’s dynamics under A ,.

b) DETERMINATION OF THE UNITARY TRANSFORMATION. TRANSFORMS OF
THE VARIOUS OPERATORS

In the subsection above, we have demonstrated the interest which one
has in considering the physical quantity R , defined as the “mean position”
of particle . We now seek a unitary transformation 7 such that in the
new representation (2), the operator R? representing this mean position
R, is simply the operator of multiplication by r_:

R =, (B.51)

whereas in (1), this same operator represents the instantaneous position
(1).
ri:

a

" =r,. (B.52)
Using (B.48), (B.51), and (B.52), we get for T the equation
r, =T, —EM0O]T" = T[ra — :—: Z (0, z)] T (B.53)
which shows that 7 is a spatial translation operator
1 g,
T = exp 21: 7iom, p, - Z.0,1). (B.54)

The transformation leaves the momentum p, unchanged:

p> =p, =p.. (B.55)
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Following (A.42), the Hamiltonian of the new representation is

H? = THV T+

(B. 56)

Starting with Equations (B.8) and (B.36.b) for H{ and 4!}, and using the
fact that T does not change p, and changes r, intor, + (gq,/m )Z (0, t),
one gets

2
« 4z
THR T =Y 2Pm + VC0u1<..,,r1 + - Z,0,1), ) (B.57.a)

2
4, 4z
Thy T = ;[— m, P AL0.1) + 5

AX0, 1) +

A

+ q1<ra + ff; Z.(0, r)) - VU (0, 1)] (B.57.b)
From (B.54) and (B.47), it follows that

L T o, q,
L =Y 2Zp - A . B.5
ih Py 1 E P, A0, 1) ( 8)

x X

Finally, (B.56) becomes

ax

2
p (’11
2y _ x Z 0,1
H 512m1+z2m A(O f)+Vcou1< A0, 1), . )

2

+Z[q, L VU0, 1) +—Z(0 1) - VU0, 1)] (B.59)

¢) PHYSICAL INTERPRETATION

The physical interpretation of H® is simple. The first term represents
the kinetic energy associated with the motion of the “mean position”. To
see this, it suffices to note that the Heisenberg equation for r, is written

.1 CH”' _p,
r, = m [l'x, H(Z)] = [‘p = ; (B60)

X

and to remember that r, represents the mean position in representation (2)
[see (B.51)]. The second term, which is a number and which has the same
form in either representation, can be written using (B.47) and (B.48.b) as
x m £2(1)/2. It represents the kinetic energy of the oscillatory forced
motion under the effect of A,. The third term represents the Coulomb
energy of the system of charges depending on the mean position r, of the
particles and their deviation ¢,Z (0, t)/m, from the mean position. The
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fourth and fifth terms represent the coupling of the external potential with
the mean position and the oscillatory motion respectively. (We always use
the long-wavelength approximation.)

Note finally that in the new description, the only terms containing both
types of variables, r, and the fields deriving from A, involve V., (third
term of B.59). The motion of r, is only coupled to the field through V¢ .

This is precisely what makes the Henneberger transformation interest-
ing. Consider for example an electron subject to incident radiation with
frequency w. If this electron is free, it cannot absorb really (i.e. with
simultaneous conservation of energy and momentum) one or more im-
pinging photons. On the other hand, if this electron is also experiencing
the Coulomb potential of other charges, such real transitions can occur,
since the Coulomb potential can now give (or absorb) the corresponding
momentum. The Henneberger representation, which introduces a clear
separation between the oscillatory motion of the electron in the incident
wave (which can be also interpreted in terms of “ virtual” absorptions and
reemissions of incident photons) and the mean motion (which changes
only as a result of real transitions), is particularly well suited to the
analysis of such processes. Exercise 4 shows indeed how the third term of
(B.59) allows a simple calculation (to all orders in the coupling with the
transverse field and to order 1 in V) of the scattering cross section of
an electron in a Coulomb field in the presence of an intense laser
radiation.

d) GENERALIZATION TO A QUANTIZED FiELD:
THE PAULI-FIERZ-KRAMERS TRANSFORMATION

Consider now the electromagnetic field as a quantized system having its
own dynamics, and assume that one is interested in the interaction of a
system of charges localized about the origin with only the long-wavelength
modes of the field. Under these conditions, we can, in the Hamiltonian in
Coulomb gauge [(A.16) of Chapter III], replace A(r,) by A(0) and thus get

1 1
H = Zm[vz — 4y A(O)]Z + Veow + Z h(0i<ai+ a; + E) (B.61)

The generalization to the quantum case of the transformation (B.54) is (*)
T = L) 700
=i Y5 ot e 20) (B.62)

(*) This transformation was in fact introduced by Pauli and Fierz before that of
Henneberger and with quite different motivations: W. Pauli and M. Fierz, Nuovo Cimento,
15, 167 (1938).
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where Z(r) is the quantized field

— h a_s(k_) ikor a:(k) ik,.-:l
Z(r) = Jd3k2 \/—ms[ e ——c . (B.63)

This field is the quantum analogue to the external potential introduced in
(B.47). Indeed, for free fields in the Heisenberg approach, one finds the
following expression:

Z(r,t) = — J dr A(r, 1) (B.64)

which generalizes (B.47).

The operators relative to the particles transform according to laws
which simply generalize (B.53) and (B.55). However, it is the way in which
the field operators are transformed which makes the Pauli—Fierz transfor-
mation particularly interesting. Indeed, it is possible to show that, in the
long-wavelength approximation, the Pauli-Fierz transformation removes
from the transverse field a part of the field which is “tied” to the particles.
According to the results of Chapter III, the transverse field does not
describe only the free radiation (in particular the vacuum fluctuations)
and the radiation emitted by the particles. It also contains the part of the
field depending on the velocity of the particles, for example, the magnetic
field produced by their motion. This field is in some way bound to the
particles as long as their velocity is unchanged. It is this last contribution
to the transverse field which can, in a first approximation, be removed by
the transformation (B.62). This explains why such a separation has been
tried as a first approach to renormalization. One such approach, initiated
by Kramers, allows one to understand in a qualitative way certain proper-
ties of radiative corrections (*), although it cannot actually be carried to
its conclusion.

(*) A detailed study of the Pauli-Fierz transformation is presented in Cohen-Tannoudji.
Dupont-Roc, and Grynberg in Complement B;.



280 Other Equivalent Formulations of Electrodynamics Iv.C1

C—THE POWER-ZIENAU-WOOLLEY TRANSFORMATION:
THE MULTIPOLE FORM OF THE INTERACTION
BETWEEN CHARGES AND FIELD

We return to the case where the field is considered as a dynamical
system, and construct a generalization of the Goppert-Mayer transforma-
tion which no longer describes the system of charges through their dipole
moment but takes into account the precise distribution of charges and
currents. One such transformation, which has been introduced by Power
and Zienau, and using an alternative approach by Woolley, leads to a
novel description of electrodynamics, rigorously equivalent to the stan-
dard description (see the references at the end of the chapter).

This new description has two advantages: first of all, the coupling
between field and charges is expressed as a function of the electric and
magnetic fields themselves and no longer as a function of the vector
potential. Also, the system of charges is described by polarization and
magnetization densities which are given directly as functions of the
microscopic observables, the position and velocity of the particles. This
provides then a rigorous basis for the electrodynamics of material media;
in particular, the displacement D is introduced naturally as the momen-
tum conjugate with the vector potential A.

One can also use this new approach to introduce the different electric
and magnetic multipole moments of the system of charges and thus get a
multipole expansion of the interaction between the system of charges and
the electric and magnetic fields. On the other hand, it is equally clear that
the magnitudes of these different multipole moments, and thus of the
coupling Hamiltonian, increase rapidly as the system is extended. As a
result, even though valid in principle in all circumstances, the approach
described above is only useful in practice for localized systems of charges
or for ensembles of such systems.

We begin (§C.1) by describing the localized system of charges by
polarization and magnetization densities, which will allow us to introduce
simply the Power-Zienau-Woolley transformation and the corresponding
new Lagrangian (§C.2). We then derive the expression for the new
conjugate momenta and the new Hamiltonian (§C.3). We analyze finally
the new description of quantum electrodynamics which results (§C.4) and
its equivalence with the description in the Coulomb gauge (§C.5).

1. Description of the Sources in Terms of a Polarization and a
Magnetization Density (*)

In §B.3 above, the system of charges was approximated by a point
dipole as far as its interactions with the long-wavelength modes of the

(*) The microscopic definition of these notions is discussed in detail by S. R. de Groot,
The Maxwell Equations, North Holland, 1969.
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field were concerned. To completely describe a distribution of charges
with finite extension a, it is necessary to introduce a polarization density
P(r) strictly equivalent to the charge distribution.

a) THE POLARIZATION DENSITY ASSOCIATED WITH A SYSTEM OF CHARGES

We initially construct the polarization field associated with a single
charge ¢, at r,. The idea of polarization assumes that one considers the
deviation of the charge distribution with respect to a reference distribu-
tion. We take as the origin O the point with respect to which the deviation
of the charge g, is referred. The reference distribution is thus the charge
q, at O. The real charge distribution (Figure 1a) can be gotten by adding
to the reference distribution a line of » nonpoint electric dipoles, each
made up of charges —¢, and + g, separated by r, /n and disposed so that
the charge —g, of one dipole is superimposed on the charge +¢, of the
preceding charge (Figure 1b). By letting n go to infinity, one gets a
continuous distribution of point dipoles whose polarization density is
given by

n—1 _+_L 1
P(r) = lim ) q1%6<r—p 21;)2[ dug,r,o(r —ur). (C.1)

n= % p=0 0

By construction, the charge density corresponding to g, at O plus the
polarization density P is strictly identical with that which corresponds to
4, at r,. The polarization density is uniformly distributed on the line
segment between O and r,. It appears then immediately that the descrip-
tion of the charge ¢, at r, with the help of a polarization density is only
truly interesting if the charge is not displaced too far from the origin O,
that is, if the charge is bound.

(11

(a) (b)
O O 4,
Figure 1. The real charge distribution g, atr,, represented in (), is equivalent to

the reference distribution (g, at O) plus n dipoles g,.r, /n (b).

Remark

Rather than distributing the dipoles along the line from O to r,. one can also
arrange them tangentially to any curve having the same endpoints. One can
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also add an arbitrary number of closed curves of the same type. All these
polarization distributions correspond to the same charge density. One thereby
has a certain freedom in the definition of the polarization field corresponding to
a given charge density, beyond the definition of the reference distribution itself
with respect to which the deviation is measured, just as the same electromag-
netic field can be described by different potentials. The choice consisting of
aligning the dipoles on a straight line gives the minimum polarization field.

The same procedure permits the description of a system of charges in
terms of its total charge ¥ g, at the origin O and the polarization
distribution

1
P(r) =) J dug, r,o(r — ur) (C.2)
= Jo

distributed on all the segments Or, and thus localized in a region of
extent a. We also use the Fourier transform of P(r),

1
@(k)=ZJ dy 2 Te i, (C.3)

u
= Jo (2 7'5)3/2

Although this integral can be evaluated easily, it is more convenient for
what follows to retain it in the form (C.3).

Remark

When k is small with respect to 1 /a, one can take exp(—ik - r,u) = 1 in (C.3).
One then gets the approximate expression of the polarization density used in
Complement A, [Equation (24b)}.

b) THE DISPLACEMENT

The divergence of P is directly related to the charge density. Actually, it
follows from (C.3) that

1

. q1 : —ik.ryu
1k-9’=2j du —=7 (k- r)e ™™
=) e

1

— z B q1 efik.rau
(2 TC)3/2 0

xX

—ik.ry

|
= Yot Iegye €9
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which gives, in real space,

Ve P(r) = — p(r) + py(r) (C.5)
where p,(r) is the reference charge density
Po(r) = <Z q1> o(r) (C.6)

and p(r) the real charge density given by (A.5.2) of Chapter 1. Combining
(C.5) with the equation

V-E(r)zw (C.7)
€
one sees that one can construct a field, the displacement
D(r) = &, E(r) + P(r) (C.8)
whose divergence is
V- D(r) = pyir). (C.9.2)

In contrast to E, whose divergence is related to the real charge density p
which depends on the dynamical variables r,, the divergence of D is
related to the density p,,, which has the two fold advantage of being known
and being static. If E; is the static electric field produced by p,, then

D (r) = & Eo(r). (C.9.b)

Remark

If certain charges of the system are unbound and can be displaced far from the
origin, one cannot include them in the definition of P. One includes them in p,
on the right-hand side of (C.9.a). This is the “free charge” density of the
electrodynamics of material media. We assume here that all the charges are
bound.

For a globally neutral system, p, is identically zero, and D is then a
transverse field:

D, =0
(C.10)
D=D,.
As a result then, following (C.8),
e Eym)y = —Pyr). (C.11)

One can take advantage of this expression to give the Coulomb energy of
the system of charges, which is also the energy of the longitudinal field
[see (B.31.a), Chapter 1], in a form which will be used later:

1
Vcout = Te, JCP" Pi(). (C.12)
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¢) POLARIZATION CURRENT AND MAGNETIZATION CURRENT

The motion of the charges ¢,, which is the origin of the currents
described by j, is accompanied by a motion of the polarization density P.
There is then necessarily a relationship between the current density j and
the rate of variation P of P.

To get one such relationship, take the derivative of (C.5) with respect to
time. Since the reference density p,, is time independent, this gives

P+V-P=0. (C.13)

Comparison of (C.13) and the equation for the conservation of charge,
6 + V - j =0, shows that j — P is a vector with zero divergence. We can
then write the current j as the sum of two terms

i0) = j,(r) + j,(r) (C.14)

where the first term

j,(n = P(r) (C.15)

which is related to the motion of P, is called the polarization current, and
where the other term, j,,, with zero divergence, 1s called the magnetizqtion
current for reasons which will become apparent later on.

To get the expression for j,, rewrite (C.14) in reciprocal space by using
(C.3) and the expression for the Fourier transform of j:

Julk) =/ (k) — P(K) =
—ik.ry 1 . e ikeTan
R ng“q“r“W )

—ik.rgu

Gz (€16

1
—ZJ udug, v (— ik - r)
x Jo

An integration by parts in the second term gives for the fully integrated
term the negative of the first term. The remaining integral is grouped with
the third term to give

1 iKorgu
. . ., € *
//m(k) =1k x z J u du (11(1'1 X 1'1) (—2—7[—)3/—,2 (C . 17)
* JOo
so that, in real space,

Jm(r) = V x M(r) (C.18)
where

M(r) = ZJ udug,r, x t,0(r — ur,). (C.19)
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The current j,, appears then as the curl of a vector field M(r) which can
be interpreted as a magnetization density. To see the physical origin of this
density, return to the definition of the polarization P. It is made up of a
set of elementary dipoles ¢,r,du localized at ur,. Such an elementary
dipole is represented by the small arrow in Figure 2.

r, + dr,

r
wur, 4 Tdu

o
Figure 2. When particle a is displaced from r, tor, + dr,, each elementary dipole
§or — g, 18 displaced from 4B to A’B’. Such a transportation is equivalent to a
current g, /dt¢ flowing along ABB’A’ and giving rise to a magnetic dipole
moment, together with two radial elements of current B4 and A’B’ which give rise
to the polarization current.

When particle « is displaced from r, to r, + dr, during the time dz, the
charges —gq, and +¢q, of the dipole are displaced respectively from A to
A’ and from B to B’. The currents associated with these displacements
flow in opposite directions and are equal to ¢q,/dr. One can close the
circuit by introducing currents with the same intensity along r,du and
(r, +dr,)du. Such a current loop gives rise to a magnetic moment
(q,/dt)(r,du) X (udr,) localized at wur,. This is just the elementary
magnetic moment of the magnetization density (C.19). The radial elements
of current in AB and B’A’ must be compensated by two current densities
localized at wur, and u(r,+ dr,) and respectively proportional to
—q.5,du/dt and q,(r, + dr,)du/ds. The corresponding current density

djp

4,[(r, + dr) du o(r — w(r, + dr,)) — r, dud(r — ur,)]/ds

Il

q, du % [r, o(r — ur)]

is just the elementary polarization current dP.

Remarks

(i) We have assumed the reference charge distribution fixed. One can generalize
the foregoing expressions when this is not the case. Beside the polarization and
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magnetization current densities, other current densities then arise, correspond-
ing to the transport of the total charge and of the polarization density (*).

(i) If the particles have magnetic moments p,, this causes &, p 8(r — 1,) to be
added to the magnetization density (C.19).

(iii) Following Power and Woolley, we have defined the polarization and
magnetization densities as integrals over the dummy variable 4. In order to get
the expressions given by de Groot, one should expand the functions 8(r — ur,)
in powers of the components of ur,, and perform the integrations over u. This
gives an expansion in powers of r,, containing all the derivative of &(r).

2. Changing the Lagrangian
a) THE POWER-ZIENAU-WOOLLEY TRANSFORMATION

This transformation consists of adding to the the standard Lagrangian
L in the Coulomb gauge given by (C.15) of Chapter II the derivative with
respect to time of a function F of the coordinates ... r,,...,A(r),...,
which generalizes (B.28) to the extent that the system of charges is no
longer approximated by an electric dipole.

The function F introduced by Power, Zienau, and Woolley is given by

F

il

— Jd3r P(r) - A(r) (C.20)

F=— Jd‘*k@*(k) - (k). (C.21)

Except for the sign, it is the scalar product of P and A. The vector
potential A being transverse, only the transverse part P, of P contributes
to the integral.

Remark

In the case where the positions of all the particles are referred to the same point
(such as the origin as we do here), one can show (Complement D,y ) that the
preceding transformation is equivalent to a gauge change.

b) Tue NEw LAGRANGIAN

In the expression for the new Lagrangian

o_p 4 9F
L'=L+5, (C€.22)

(*) E. A. Power and T. Thirunamachandran, Proc. Roy. Soc. Lond., A372, 265 (1980).
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it Is Interesting to group d F/d¢ with the interaction Lagrangian L, of the
particles with the transverse field. The new interaction Lagrangian L; is
written

, dF
LI:LI +—d-t_
:[d3rj-A—[d3r(l5-A+P-A). (C.23)

One gets the scalar product of A with j — P, which from (C.14), (C.15),
and (C.18) is just V x M:

L,’=Jd3r(V X M)-AAJd%P-A. (C.24)

Integration by parts of the first term gives rise to the curl of A, i.e. to the
magnetic field B(r). Since A is nothing more than —E, , we get finally

L,’=Jd3rM°B+Jd3"P‘E¢ (C.25)

which expresses the interaction of the charges with the transverse field as
the interaction of the magnetization density with the magnetic field and
that of the polarization density with the transverse electric field.

The complete expression for the new Lagrangian L’ is

r2
ml rJ

N o L S UL/ R
L_; 2 1gﬂ4nso|ra—rﬂ| §6C°“1+

+8—20Jd3r[Ei—c2B2] +Jd3rM-B+Jd3rP-EL. (C.26)

¢) MULTIPOLE EXPANSION OF THE INTERACTION BETWEEN THE CHARGED
PARTICLES AND THE FIELD

With a view to the multipole expansions in powers of /A which will be
introduced hereafter, it is useful to limit the transformation of the
Lagrangian to the long-wavelength modes, that is, those having a wave
vector k with a modulus smaller than a limit k,, such that k,,a <« 1.

For this we distinguish in the expansion of the transverse field A(r) the
contributions of the long-wavelength modes and the others:

A(r) =A%) + A” (1) (C.27)



288 Other Equivalent Formulations of Electrodynamics IVv.C2
where

A(r) = J d*k (k) e’ (C.28.a)

(2 7'[)3/2
1
A7(r) = W J d*k o/ (k) e (C.28.b)

the symbol < (or >) means that the sum over k involves all the values
of k with modulus less than (or greater than) k,,. The function F is then
chosen so as to contain only the long-wavelength modes:

Fo Jd“’ e (C.29)

and one gets
LI,> — Jd3rj . A> (C30b)
L :Jd3,.M.B< +Jd3,.p-Ef, (C.30.c)

Since by definition B< (r) and E< (r) vary only slightly over a distance of
the order of a, one can expand these fields in a Taylor series near the
origin. The integrals over r in (C.30.c) amount to projecting the magneti-
zation and polarization densities M(r) and P(r) on monomials of increas-
ing power in x, y, z. These projections are the multipole moments of the
system of charges and currents. Taking into account the functions
8(r — ur,) appearing in the definitions (C.2) and (C.19) for P(r) and M(r),
the integral is immediately evaluated. It remains only to integrate over u
to get the expression for these multipole moments as a function of r,, and
f,. The interaction Lagrangian is then written in the form of a multipole
expansion, whose first three terms are

L =d-E0) + m-B(0) + ) g
ij

~

—ES0) + - (C.3D)

with
d=>Ygq,r, (C.32.a)
1 .
mzzzqzraxra (C.32.b)

! 3
4ij = qua(("zi Faj — goij l'i) (C.32.0)
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One obviously gets the interaction of the electric dipole d with the
transverse electric field at the origin as in §B.3, but to second order in a
new terms also arise: the interaction of the magnetic moment m with the
magnetic field at the origin, and that of the electric quadrupole moment
q,, with the gradient of the transverse electric field at the origin. [One
removes the trace from the tensor 7,7, ;» since it does not contribute to

(C.31), E, having a zero divergence.]

3. The New Conjugate Momenta and the New Hamiltonian
a) THE EXPRESSIONS FOR THESE QUANTITIES

In (C.26) for L’ the velocity , appears in the kinetic energy and in the
magnetic interaction term. This latter quantity is given by

1
fd%M "B =3 Jd%'f udug,(r, x ¥)- B(r) o(r — r, u)

0

1
=2 J wdu g, [B(r,u) x 1,]. (C.33)

0

Taking the derivative of L’ with respect to I, then gives

1
Py = m,F, + J udug, Br,u) xr,. (C.34)
0

In that same expression (C.26) for L’, the vector A, which is just -E, ,
appears in the field energy and in the interaction Lagrangian, where it is
multiplied by P. As has been done in §C.3 of Chapter II, it is useful,
before taking the derivative, to express L’ as a function of the indepen-
dent dynamical variables of the transverse field, that is, 2/ (k) and &7 *(k)
taken is one reciprocal half space. One has then

TAk) = &, ./(K) — 2,(K). (C.35)

Since &7 is transverse, only 2, contributes to the interaction and thus
arises in the derivative.
The new Hamiltonian is given by

H, =Y1t, py + {d‘;k(.cv/. - TE + A T,)— L. (C.36)

One can check that H,. is the same as H, when it is reexpressed as a
function of the velocities [see (A.12) with dF/dr = 0]. It is the sum of
the kinetic energy of the particles, the energy of the transverse field, and
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the energy of the longitudinal field (Coulomb energy). As a function of the
new canonical variables, H,. is given by

1 2
1

0

! . 7 E3
+ fd%[(n” - %)8 (7, +7) + &y P k% o - .s:i*} +
0

x 4x 4
Pl L T 3
e, 1s defined by (B.36) of Chapter I. One can separate H. into a first
part Hp,, which depends only on the particle variables r, and p,,., a
second part Hpg,. which depends only on the new variables &/ and 7T, of
the transverse field, and an interaction Hamiltonian H,;, which depends
on both:

‘k |'?L |2

2
Par x Qa 4y 3
HPL':Z : +28Coul+ Z |+:fd

~ 2 m, ~ o dmey | T, — T,

€o

(C.38)

Il e n*
Hg = d3k<L + gyl - lqz*> =
: o

_ (‘dsk i [ 7IL,

€o

2

+ ?| o |2} (C.39)

i . "
H, = d3k<—i A - -5«1) -
) &g

1
- ZJ udu q1<r1 x l::f) - B(r, u) +
* Jo

x

< [ 2
+ 22;1 [J udur, x B(r, u)} (C.40)

x 0

b) THE PHYSICAL SIGNIFICANCE OF THE NEW CONJUGATE MOMENTA

In the approximation where the magnetic effects are neglected (B = 0),
P.. 1s the mechanical momentum m i, as in the electric dipole approxi-
mation. More generally, the difference between p,;. and m,f, is propor-
tional to |r |, and can thus be very small if the system of charges is highly
localized. Finally, this deviation is expressed directly as a function of the
magnetic field and no longer as a function of the vector potential.
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Remark

In fact, Equation (C.34) can be rewritten in the form
Pars = My B, + g, A'(r) (C.41.2)

where

1
A(ry = j wdu B(ru) x r. (C.41.b)
0
One can show by taking its curl that A’(r) is a special vector potential of the
magnetic field B(r). It appears as a generalization of the vector potential
B X r/2 of a constant field. It has the property of being zero at the origin, of
being expressible as a function of B itself, and of being at every point
perpendicular to r (Poincaré gauge; see Complement Dyy).

The conjugate momentum 77, (k) of the vector potential is transverse from
(C.35). Since A is equal to —E_ , the equation (C.35) can be written

— [& E (r) + P (r)]
= — D) (C.42)

where D is the displacement defined by (C.8). The momentum conjugate
with A then arises as the transverse part of D, whereas in the standard
description it corresponds with the transverse part of the electric field E.
Since from (C.9) D, is a time-independent Coulomb field (created by the
reference charge distribution p,), one can say that to within a constant
field, T1,, represents the displacement D in its entirety. The displacement
D(r) being related locally to the total electric field by (C.8), the same is
true for I1,. , whereas in the standard representation, I, is related to E|
and not to the total electric field. The tie between IT, (r) and E(r) is even
clearer for a globally neutral system (p, = 0). One has then

I,.(r)

Il

Neutral system = T1.(r) = — [¢ E(r) + P(D]. (C.43)

Away from the system of charges, P vanishes and II;. even coincides with
E (to within a factor of —¢,). One can say finally that II,.(r) represents
the best possible description of the total electric field, which has a
longitudinal part, by a transverse field. This description is exact through-
out all space except in the finite volume occupied by the system of
charges.

This local relation between I1,, and E is the most interesting aspect of
this new point of view; away from the system of charges, P is identically
zero and I, ., like E, propagates with velocity c. It contains no instanta-
neous part, as I, does in the standard description. This property has
important consequences for the study of the interaction between two
distant charge systems (see Complement Cyy).
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Remark

Rigorously, inside the system of charges there are instantaneous propagation
effects for IT,. ; in effect, P(r) is related instantaneously and nonlocally to the
position of the charges. As a result, since E propagates with velocity ¢, I1;. also
has an instantaneous part. However, except in this small region of space where
the retardation effects are everywhere small, the new dynamical variable IT,.
propagates with velocity c.

¢) THE STRUCTURE OF THE NEW HAMILTONIAN

The Hamiltonian of the transverse field, Hg,., is (as in the standard
description) the sum of independent harmonic-oscillator Hamiltonians
corresponding to each of the modes. The dynamics of the field, described
in terms of the conjugate variables, is then the same as in the standard
description. However, the electric field itself is not expressed in the same
way as a function of IT,. and IT,, so that different motions of the electric
field correspond to the same motion of I1;. and II,. ’

The Hamiltonian of the particles, Hp,. is given in terms of the
canonical variables and is little changed. Only the last term of (C.38) is
added and appears as a correction to the Coulomb energy. It must be
regrouped with the radiative corrections resulting from the coupling of the
system of charges with the free field. Note however that this term plays an
important role when one considers the case of two separated systems of
charges ., and #;. It can be shown then (see Complement Cy) that the
contribution to the integral over k of #¥,- %, 5+ cc. cancels the
instantaneous Coulomb interaction between the two systems of charges.
There are no more direct interaction terms between ., and %. All
interactions take place through the fields B and I1,. ., which propagate
with velocity c.

The interaction Hamiltonian H,,. between the particles and the fields
B and I1,. is given by (C.40). It contains three terms.

The first term can be written in real space in the form

[d%&-P:—jd*’r&-P (C.44)

N &g

I1,. itself being transverse, one can replace P, by P in the integral. This
first term describes the interaction of the polarization P of the system of
charges with D, , or D for a globally neutral system.

The second term can be written with the help of the magnetization
density

1
M'(r) = Zj udu q1<r1 X Pw> S(r — 1, u) (C.45)

X 0 m{l
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in the form
— jd*‘rM’(r) - B(r). (C.46)

It describes the paramagnetic interaction between the magnetization den-
sity M'(r) of the system of charges and the magnetic field B(r). It should
be noted that since p,,. is different from m i, [cf. (C.34)], M'(r) is
different from the true magnetization density M(r) introduced in (C.19).
However, the density M'(r) is easier to use in the Hamiltonian formalism
than M(r) in that it is given directly as a function of the dynamical
variables r, and p_,..

The last term, quadratic in B, represents the diamagnetic energy of the
system of charges in the magnetic field B, that is, the energy associated
with the variation of current density when one switches on the field. We
call this last term H,, (dia).

The total Hamiltonian is thus

P-1,.
H,. = jd%-TL — jd% M’ - B + H,, (dia) (C.47)
0
P T,
= jd“‘kT" - Jd3k AM* B+ Hyy(dia). (C.48)
4]

The first two terms of H,,. could be put in the form of a sum of terms
describing the interaction of the multipole electric and magnetic moments
of the system of charges with the corresponding electromagnetic multipole
waves.

4. Quantum Electrodynamics from the New Point of View

One can now proceed to the canonical quantization of the preceding
theory in exactly the same way as in Chapter I (§C.4).

a) QUANTIZATION

For particle a, the position r, and its conjugate momentum Pur
become operators r{? and p?. satisfying the fundamental commutation
relations. One easy way to satisfy these commutation relations is to take
for r? and p{?. the same operators r, (multiplication by r,) and p, =
~ihV, as those used in the initial description to represent the conjugate
variables r" and p{):

Il
-

(2)

{ ) =r, (C.49.a)
sz' = pz . (C49b)
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In a general way, where we later use a mathematical operator G without
superscript, it will always coincide with the operator representing the
variable G in the earlier description:

G=GgW, (C.50)

Likewise, the electromagnetic field is described in this new representa-
tion by the two transverse conjugate fields &/ and 7t,., which become the
operators &/¥ and T{?’ satisfying the canonical commutation relations
(C.44) of Chapter I1. As above, it is convenient to take for &/ and 7>
the same operators & and 7T as those representing &/ and 7' in the
first representation:

{ o (k) = A (k) (C.51.a)
k) = 7(k). (C.51.b)
As in §C.4.c of Chapter II, the annihilation operator a (k) is introduced

as a linear combination of & (k) and 7 (k). The Fourier transforms A(r)
and TI(r) of & (k) and 7r(k) are then written

/ h
A(r) = J' d*k z 2 ¢y (2 m)°

x [ea,(k) e*" + gaf (k) e ] (C.52.a)

Inr) = — ieoj 3kz

2 80(2 n)3
x [ea,(k) e*" — gaf(k)e ™. (C.52.b)

These various mathematical operators, as well as B = V x A(r), are used
in what follows to give the various observables in the new representation.
Thus, the equations (C.51) become in real space

{ A2A(r) = A(r) (C.53.3)
) = I1(r). (C.53.b)

b) THE EXPRESSIONS FOR THE VARIOUS PHYSICAL VARIABLES

As has been explained in §A.2 above, a given physical quantity is
generally represented by two different operators GV and G®), related by
G = TG'WT", in the new representation (2) and in the original one (1).

Consider for example the velocity of particle «. In the standard
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Coulomb description this variable is represented by the operator

1
W= —[p, - 4, A(r,)] (C.54.2)

whereas in the Power-Zienau-Woolley description one has, from (C.34)

bl

1
Vo - ;11_[;, _ an‘ du uB(r, u) x ra] (C.54.b)

0

Another example of a variable is the total electric field. which is written
in representation (1) as

1 1 r—r
EYry = ——1 2 C.55.
M= - =00 + =Y o5 (€5

and in representation (2), using (C.8), (C.9.b), and (C.42), as
E®(r) = — iH(r) — iP(r) + Eo(r) (C.55.b)
&g &g

where E(r) is the static field created by the reference charge distribution
Po(T).

Conversely, the physical meaning of a given mathematical operator
depends on whether one is using representation (1) or (2). Thus, the
operator Il(r) given in (C.52.b) is associated either with the transverse
electric field or with the transverse displacement [see (C.42)];

II(r) = NP(r) = — ¢, EM(D) (C.56.2)

N = O2r) = — D). (C.56.b)

Finally we give the expression for H®, the Hamiltonian in the new
representation. It suffices to replace the various variables and conjugate

momenta r,, p,;-, A(), I (r) in (C38), (C.39), and (C.40) by the
corresponding operators r,, p,, A(r), and Il(r). One gets then

H® = H}, + Hy + H] (C.57)
with
2
p qy dy
H' = (2)/ — a a a dx
i HPL 21:2m1+§:8C0ul+a;’/4n80'r1_r1/|+

P, |?
+fd3kg (C.58.a)

&q
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\ n2
Hy = H. = &_Ode [ © 4 v x Am)? }
2 N
= [d3k Y ﬁa)[a;(k) a(k) + %} (C.58.b)
H, = H} = %jd-"; P(r) - TI(r)
L [ d P:). 8 B P,
;./uuq1 er (r,u) + B(r,u) - r1><m1
1 2
n ;2";11 UO wdur, x B(r, u)i| . (C.58.¢)
The new particle Hamiltonian Hj = H?, differs for the original H, =

H{Y by the last term of (C.58.a). In Contrast the radiation Hamxltomans
are the same: HY). = H{) = Hj. Finally, in the new interaction Hamilto-
nian H; = H}), which differs from the original one H, = H}}), we have
correctly symmetrized the product of p, by the function of r, which
appears in the paramagnetic coupling term.

5. The Equivalence of the Two Points of View. A Few Traps to Avoid

The two formulations of quantum electrodynamics based on the stan-
dard Lagrangian in the Coulomb gauge and on the Power—Zienau-
Woolley Lagrangian are certainly equivalent, since, as a result of the
general considerations of Part A above, they are related by a unitary
transformation T whose expression is written, using (A.37) and (C.21),

T = exp[ 75 jd3k PH . J (C.59)

It happens however that the general character of this equivalence is often
forgotten and that errors of calculation or misinterpretations give the
illusion that one of these two points of view is more valid than the other.

To avoid such errors, it is appropriate first of all to identify the physical
states and the variables which arise in the process under study. For
example, if the initial state of the process is a state where the particles
have a well-defined velocity, then it is necessary to identify the operator
associated with the velocity, since the initial state is an eigenstate of this
operator.

Once the problem is correctly stated in physical terms, one must keep
in mind the fact that its mathematical formulation generally depends on
the representation. For example, the velocity operator does not have the
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same form in the Coulomb and in the Power-Zienau-Woolley representa-
tions [see (C.54.a) and (C.54.b)]. More generally, the operators G and
G associated with the same variable in representations (1) and (2) must
correspond through T and are most often different. It can happen that the
operator associated with a variable has a simpler form in one description
than in the other. The eigenvectors associated with this variable are
simpler to find in this description, and it is always possible by use of T or
T~ to get their expressions in the other description. It can also happen
that the exact diagonalization of the operator associated with a variable is
not possible in any representation, and then it is necessary to use pertut-
bation expansions in powers of a coupling parameter, such as the charge
q, of the particles. It is necessary then, if one wants to compare the
predictions from the two points of view, to extend the expansions to
the same perturbation order in the two representations. For example, the
transition amplitudes, which are the matrix elements of the evolution
operator between an initial and a final physical state, only have the same
value in the two descriptions to a given order s in ¢, if the expansions of
the initial state, the final state, and the evolution operator are extended
throughout to the same order s.

Finally, we return to the decomposition of the total Hamiltonian into
three parts relative to the particles, the field. and the interaction. Since T
does not depend explicitly on time, the total Hamiltonians H® and H"
are related by the unitary transformation (see A.34)

H? = THO T (C.60)

On the other hand, analogous relationships do not exist between H}». and
HY. H} and H{), and H{) and HY). In other words, the unitary
transformation redistributes in different ways certain terms of the Hamil-
tonian between the three parts which we distinguished in (C.58.a,b,c).
One important consequence is that the eigenstates of HY) and Hf3. are
not put in correspondence by T; the ground state of HfY does not
represent the same physical state as the ground state of Hf}. One can
then ask the question: what is the “true” ground state of an atom or a
molecule? Is it that of HgY or H{2? It is in fact neither one or the other.
One cannot really remove the interaction of the charges with the trans-
verse field and observe the ground state of Hy) or Hf?.. What we call the
ground state of a system of charges is in fact the ground state of the
system charges + transverse field, which must be an eigenstate of H") or
H®. These operators are really related by T from (C.60), so that the
ground state from either point of view describes the same physical state.
The eigenstates of HS) and of HS}. are different approximations of the
real state, involving the neglect of this or that part of the effects of the
transverse field on the system of charges.
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D—SIMPLIFIED FORM OF EQUIVALENCE FOR THE
SCATTERING S-MATRIX

The rigorous approach to the problem of equivalence between two
points of view which we have treated in §C.5 above is valid in every case.
As we have seen in Part A, it applies in a general way to every transforma-
tion appearing finally as a unitary transformation in state space. It can
however lead to complex calculations. We will see in this part that, if the
physical problem can be stated in terms of collisions, important simplifi-
cations appear. The transition amplitudes are equal in either approach,
even if one does not take care to transform the state vectors representing
the initial and final states.

To show this, we are going to follow a procedure which generalizes in a
way that of §B.3.d.i above, where the external potentials are taken to be
zero at the initial time ¢, and at the final time ¢, and are only “switched
on” between ¢, and 1, with the result that the unitary transformation 7(¢)
connecting the two representations reduces to the identity for ¢+ < ¢, and
t > t,. Such a method is not directly applicable to quantum electrodynam-
ics, which we are treating here, since the quantum fields are operators and
not given functions of time. One can however draw inspiration from it for
adiabatically “switching on” and “switching off” the coupling between
the particles and the field with the help of a parameter A(r) which is
formally introduced into the interaction Hamiltonian and which has a
time variation corresponding to the temporal evolution of a collision
process.

1. Introduction of the S-Matrix

We begin by explaining how it is possible to analyze in this way a
collision process in the first representation. More generally, consider a
Hamiltonian H® which can be separated in the form

HY = H, + H, (D.1)
where H, is an unperturbed Hamiltonian describing the proper energy of

the physical systems whose interaction is described by H,. We then
introduce formally a new Hamiltonian HV(\) defined by

HY() = H, + iH, (D.2)

where A is a real parameter lying between 0 and 1. For A = 0, HV(X)
reduces to H,, whereas for A = 1, HO(X) is equal to HV. To describe a



IV.D.1 Simplified Form of Equivalence for the S-Matrix 299

collision process, it is convenient then to take for A a function A(¢) which
increases slowly from 0 to 1 between ¢/ and ¢,, and then decreases slowly
from 1 to 0 between ¢, and ¢; (Figure 3). Indeed, assume that the global

(1)

)
+

1 3 i 11

i i

0

Figure 3. The temporal evolution of the coupling parameter.

system starts at time #/ in an eigenstate |¢,) of H, with energy E,
describing the unperturbed system. The transition of A(¢) from 0 to 1
between 7/ and ¢; is an easy way to simulate the approach and overlap-
ping of two “quasi-monochromatic” wave packets which initially do not
interact because they are too remote. Similarly, the transition of A(¢) from
1 to 0 between 1 and ¢/ simulates the end of the collision, the wave
packets separating and no longer interacting. The interaction of the
systems, established between ¢/ and 7, acts between ¢, and ¢, and
vanishes between £, and /. At time 1/ the system has evolved to a state
|, which, A(¢) being slowly varying, is found on the same “energy shell”
as | 5. It follows that the scalar product of |y s> with another eigenstate
le,y of H, is different from zero only if E, = E,. This scalar product
represents the scattering amplitude from |@,) to |@,).

The switching on and off of the coupling by the function A(z) in Figure
3 is, in fact, only one convenient and intuitive way to introduce the
S-matrix by taking as asymptotic states the eigenstates |@,) and |¢,) of
H,. (*) The calculation of the matrix element between |@,) and |, of
the evolution operator (**) U®M(1/,1/) associated with the Hamiltonian
H, + A(2)H, gives the matrix element of S between |¢,) and |¢,), which
one can show may be written

Slitll) = 5[):1 -2 T(i 5(Eb - Ea) (;P()i) (D3)

The function 8( E, — E,) expresses the fact mentioned above that the ﬁnz:%
{

state |@,) must be on the same energy shell as the initial state [@,). T,
(*) There are of course more rigorous methods available, such as the formal theory of
scattering. See the references at the end of the chapter.

(**) In fact, this operator must be taken in the interaction representation with respect to
H,, so as to eliminate free-evolution exponentials, which lack a well-defined limit when
t; — 1; goes to infinity.
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is the transition matrix, which can be calculated perturbatively as an
expansion in powers of H, (Born expansion),

: (o | Hilo > <o [ Hilo, >
Ct‘:a])=<90b|H1|(Pa>+el_{I(§lz > IE~E+i81 +

(D.4)

2. The S-Matrix from Another Point of View. An Examination
of the Equivalence

Consider now a second point of view derived from the first by the
unitary transformation €'/ where F is time independent. The new
Hamiltonian H® is related to the original H" by

H® = THOT* . (D.5)

It is quite convenient for what follows to introduce formally the same
parameter A which was used to define H¥(X) in (D.2). We take then

T() = exp(% )_F> (D.6)

and we define the Hamiltonian H®(\) as the transform of H"(\) by
T(M):

H®() = TG HYG) T () = T(A) [Hy + ZH]) TH(2). (D.7)

For A = 0, T()) is equal to the unit operator, and HP(A) and HD(X)
reduce to H,. For A = 1, one gets (D.5). It is then possible to write

HP(i) = Hy + AH[(A) (D.8)

where we have regrouped all of the terms depending on A in AH/(A).
This last term (taken for A = 1) thus forms the interaction Hamiltonian in
the second description, which we now denote by H/. Note that this
Hamiltonian is not in general the transform of H, by T.

Having thus shown the correspondence between the two descriptions
for each value of A, we can now analyze how the collision process
associated with the function A(¢) in Figure 3 appears from the second
point of view. At the initial time ¢/, A(¢/) = 0 and T(A(r/)) reduces to the
unit operator. The initial state is thus described by the same ket |g,)
in both representations, since |g,) is identical to its transform. The same
is true at the final time ¢/, since )\(t,’) = 0. The final state is thus
also described by the same vector |g,) in both representations. Between
t/ and 1/ the state vector evolves under the influence of the Hamiltonian
H, + A(1)H, in the first representation. Since the unitary transformation
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T(A(1)) depends on time via A(t), the evolution in the second repre-
sentation is governed using (A.42) and (D.6), by the Hamiltonian

Ho + 0 Hi(0) + m[% mm)] T () =
= Hy, + M0 HJ(A0) — () F. (D.9)

The matrix element between (¢,| and |@,) of the evolution operator
associated with the Hamiltonian H, + A(¢)H, is then identical to the
matrix element between the same states (¢,| and |¢,) of the evolution
operator associated with (D.9):

Uya (. 1) = UGNty 1) (D.10)

In fact, since A(¢) varies very slowly with ¢, the last term of (D.9),
A(t)F, is very much smaller than the second. Its contribution to the
evolution operator associated with (D.9) can thus in general be neglected
(*). The operator U® can then be calculated by considering only the
effect of the perturbation A(z)H/(A(¢)), which increases slowly from 0 to
H/ between ¢/ and 1, remains equal to H; between ¢, and ¢, and
decreases slowly then from Hy to 0 between 7, and ;. One then recovers,
for the interaction Hamiltonian which must be taken into account for
U@, a temporal behavior resembling that which we have introduced in
the first picture to define the S-matrix. In the limit 7, — ¢, — oo, the
equality (D.10) becomes

Sy’ = Spa) (D.11)
where
S§2 = 8,, — 2 &E, — E,) G2 (D.12.2)
. CoplHilo. > o | Hilo, >
> (2) 4 I c ¢ I a
Z()ba <(pb|HI|(pu>+el—lvr(])’l+zc: Ea—vEc+ig +
(D.12.b)

The identity (D.11) between (D.3) and (D.12.a) involves finally the iden-
tity between T, and G2’ when E, = E, (as a result of the presence of
the delta function):

= ©® when E,=E,. (D.13)

The equality (D.13) can be established more rigorously by starting from
the formal theory of scattering for all transformations F of the kind
introduced in this chapter (see the references at the end of the chapter).

(*) It is possible to construct transformations F sufficiently singular so that A(s)F can

not be neglected (K. Haller, private communication). We assume that this is not the case for
the transformations envisioned here.
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The identity (D.13) between the transition matrices G and G® on
the energy shell is a remarkable result which simplifies most practical
calculations considerably. The majority of the physically accessible experi-
mental parameters (cross-sections, transition probabilities, etc.) are indeed
expressible directly as functions of the transition-matrix elements, and it is
quite convenient to have the option of making the calculation either with
H, or with H/ in the same state basis, formed by the set of eigenstates of
H,, without bothering with the fact that H,, is not invariant under T and
that its eigenstates do not represent the same physical states in the two
representations.

Remark

To stress the fact that the Hamiltonian is changed, but not the states, when one
goes from the term on the left to the term on the right in (D.13), some authors
call it a “hybrid transformation”. Other authors call H/ — H, a “pseudo-per-
turbation”, since this difference has no effect on the transition matrix. ’

3. Comments on the Use of the Equivalence between the S-Matrices

To conclude this part, it is important to draw the reader’s attention to
the various dangers accompanying the hasty use of (D.13).

First of all, one must not forget that (D.13) is only applicable if the
problem under study can be put in the form of a collision problem. The
fact that one can use the same ket |¢,) (or |@,)) to describe the initial (or
final) state in the two representations is not the result of a “miracle”. It
rather means that in a collisional process the interaction can be ignored in
the remote past before the collision and in the remote future after it. It is
indeed so as to stress this physical idea that we have preferred to follow
here a qualitative approach based on the switching on and off of A rather
than giving a more rigorous demonstration based on the formal theory of
scattering,.

It is clear that if |@,) is not the final state of a scattering process, for
example, if |@,) is an excited atomic state which can decay by sponta-
neous emission, the reasoning above is no longer valid, since one can no
longer let ¢, and ¢; tend to infinity while retaining the same state [@,).
Thus it is important in the application of (D.13) that the initial and final
physical states be stable or at least that their instabilities can be neglected
in the problem being examined. If not, it is necessary to “embed” the
process under study in a more complex process corresponding to a true
scattering (*) or revert to the general method of §C.5 above.

(*) It is possible in this way to resolve completely the apparent contradictions in the
results given by the two representations for the shape of the 25 — 2 p line of hydrogen, the
Lamb transition. See Complement By, §3.b.
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Another error to avoid is applying (D.13) off the energy shell. G{!) has no
reason to be equal to G2 if E, is different from E,. On the other hand,
the system can of course pass through intermediate states |¢. ) with
unperturbed energy E_ different from E, = E,. This is what the higher-
order terms of the Born expansions (D.4) and (D.12) address.

Note finally that the equality between T{.' and G2 on the energy
shell does not imply the equality of the contributions of a given intermedi-
ate path in the high-order terms of the expansions (D.4) and (D.12.b). In
particular, even if one intermediate state plays a preponderant role as a
result of a quasi-resonance, it is incorrect to systematically neglect all the
other intermediate states. The transition-matrix elements calculated in the
two representations retaining only the quasi-resonant intermediate state
are in general different. It is quite possible that the approximation
consisting of neglecting all the other intermediate states will be valid in
one representation. It is rare for this to be the case in both simultaneously.
(See Exercise 2.)
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COMPLEMENT A,

ELEMENTARY INTRODUCTION TO THE ELECTRIC
DIPOLE HAMILTONIAN

We consider an ensemble of charged particles forming a localized
system with spatial extension of the order of a. This is the case, for
example, in atoms or molecules made up of electrons and nuclei in bound
states whose spatial dimensions are of the order of a few Bohr radii. If one
such system interacts with radiation with wavelength A large with respect
to a, it is legitimate to neglect the spatial variation of the electromagnetic
field over the expanse of the system. This approximation, called the
long-wavelength approximation, has been used in §B.3 of this chapter to get
a simpler equivalent formulation of electrodynamics for a localized system
of charges coupled to an external field. The corresponding transformation,
the Goppert-Mayer transformation, has been presented as a change of
Lagrangian or a gauge change. We again treat the same problem here
(§A y.1) by directly studying the unitary transformation which permits
one to get the electric dipole Hamiltonian E - r by starting with the usual
Hamiltonian A - p (*). Next we generalize the Goppert-Mayer transforma-
tion to the case where the electromagnetic field is treated. not as an
external field, but as a quantized system with its proper dynamics (§A .2).
Finally, we look at some possible extensions of the method used here

BA.3)

1. The Electric Dipole Hamiltonian for a Localized System of Charges
Coupled to an External Field

a) THE UNITARY TRANSFORMATION SUGGESTED BY THE
LONG-WAVELENGTH APPROXIMATION

Let A (r, ) be the potential vector describing the external radiation
(the scalar potential U,(r, ¢) is assumed to be zero). The long-wavelength
approximation involves neglecting the spatial variation of A (r, ¢) in the
Hamiltonian. Thus one can replace A (r,, ¢) by A (R, t) in the kinetic
energy term, where R is a point taken in the interior of the system of
charges. In the following, we take R as a fixed point, which we choose as
the origin of the coordinates R = 0, which amounts to ignoring all the
displacements of the atom or molecule as a whole (see, however, the
Remark in §Ay.1.b below). Under these conditions, the Hamiltonian is

(*) Since we are not using here the Lagrangian formalism, reading this complement does
not require knowledge of the ideas introduced in Chapters I and IV.
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written

HO) = Yy (b, — 4, A0 0] + Ve (1)

where V., is the Coulomb energy of the system.

The simple form which the kinetic energy term takes in the long-wave-
length approximation suggests the application of a unitary transformation
T(r) which translates each operator p, by an amount ¢,A (0, 1):

TP, T () =p, +q, A0, 7). (2)

The translation operator T(t) which effects this transformation is given by

T() = exp[— %z g, T, - A0, t)}

=.m4-%d-A4Q0] 3)

where
d=3gq,r, (4)

is the electric dipole moment of the charge distribution with respect to the
origin. Equation (3) coincides with that found in Part B above from the
Lagrangian formalism [see Equation (B.34)].

Remark

We have not included in (1) the interaction terms of the particle spin magnetic
moments with the magnetic field of the external radiation. These terms are
actually smaller than the interaction terms in A, - p by a factor of the order of
hk/p [see Equation (D.15), Chapter III], that is to say, of the order of a/A,
since %/p ~ a. They are thus of the same order of magnitude as the interaction
terms which have been neglected by replacing A (r,, ) with A (0, ¢).

b) THE TRANSFORMED HAMILTONIAN

In this new representation, the temporal evolution of the transformed
state vector |{'(2)) = T(¢)|(¢)) is governed by the Hamiltonian

H(t)y=T®OHHT () + ih[%gt)} TH(1). (5)
By using (1) and (2), we find

2

TWHOT() =Y 5~ + Veou (6)

2m
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and by using (3)

MFZP}TWo=d-Aﬂu):—d-amo (7

which gives finally

2
H(y=YP Ly —d-Ef0,1). (8)

2 m,

We have thus found that in the long-wavelength approximation, the
interaction with the external field is simply described in this new represen-
tation by a coupling term between the dipole moment d of the atom and
the external electric field evaluated at the position of the atom.

Remark

It is possible to take into account the global motion of the atom and to refer
the positions of the charges g, to a point R which, rather than being a fixed
point, is taken at the center of mass of the atom (see Exercise 3). One then finds
that if the total charge Q = L _q, is zero, Equation (8) remains valid provided
that one replaces 0 by R in E_(0, 1). In contrast, if the system is an ion (Q # 0),
new terms appear in the Hamiltonian H’(1). They describe the coupling of the
global motion of the ion to the external field A,. In all that follows in this
complement, we only consider globally neutral systems:

0=224,=0. ®

¢) THE VELOCITY OPERATOR IN THE NEW REPRESENTATION

In the initial description, the velocity of the particle is represented by
the operator

1
vV, = r_n— [px — 4, Ae(05 [)] (10)
while in the new description it is represented by
v. = T()v, T (1) (11.a)

which, using (2) and (10), is equal to

P
= (11.b)

Thus, in the new description we find a much simpler relation between the
momentum and the velocity.
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2. The Electric Dipole Hamiltonian for a Localized System of Charges
Coupled to Quantized Radiation

We now consider the radiation field as a quantized system with its own
dynamics.

a) THE UNITARY TRANSFORMATION

If the coupling between particles and radiation mainly involves the
modes whose wavelength is large with respect to a, we can, in a first
approximation, neglect the contribution of the other modes. The operator

A(r) = Z ’Q{wj[aj g eikstx 4 aj* sje—ikj.u] (12)
J

can then be replaced by A(0), since for all the modes taken into account
k,-r,) < 1. In this approximation, the Hamiltonian in the Coulomb
gauge is written

1 1
H = Zz_m [pa — 4y A(O)]Z + VCou] + Z h(/ﬁ(ﬂ; a; + i) : (13)
a a J

An argument similar to that presented in §A y.1 suggests that one apply
to (13) the unitary transformation

T = exp[— %—Z 4. T, * A(O)} = exp[w %—d . A(O)] (14

which, while resembling (3), differs from it. In (14), A(0) is a time-indepen-
dent field operator, while A (0, ¢) in (3) is a classical function of time. It is
indeed interesting in what follows to reexpress (14) with the aid of the
operators a, and a; using the expansion (12) for A(0). We then get

= exp{Z(i* a; — /ljaj*)} (15)

with
o= e -d. (16)

T S2e ho, L3 7

b) TRANSFORMATION OF THE PHYSICAL VARIABLES

Consider first the operators relating to the particles. Since r, commutes
with T, this operator represents the position of the particle in both

s

descriptions. As for the velocity, since the operator A(0) acts like a
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c-number with respect to the particles, we get in a fashion identical to (10)
and (11)

v;=TvaT+=%. 17

X

We now examine the field operators. Note first that the quantities A
introduced in (16) are purely atomic operators commuting between them-
selves and can then be considered as numbers with respect to the radiation
operators a; and a;. The operator T in the form (15) thus appears as a
translation operator for a; and a; [see (C.61) and (C.66) of Chapter I11]:

{ Ta,T* =a; + 4 (18.a)
Taf T =af + 2. (18.b)

J

We are going to use these relations to calculate the operator E’ (r)
describing the transverse field in the new representation. Starting from the
expression for the transverse electric field in the Coulomb gauge,

E/(r) =i} &,[ae;e™ — af g;e7™7] (19)
7
we find
Em=TE®T"

i)y &, + 4)¢ et — (af + ) e e ]
J

J

=E @) — ) [; gg; - d)e™r + c.c} (20)

. 3%
kg, 2 ory L

where E | (r) is the mathematical operator given in (19). The last term of
(20) will be interpreted later. Consider finally the magnetic field. Since
A(r) and A(r’) commute for all r and r' [see (A.13) of Chapter IHI],
B(r) = V X A(r) commutes also with A(r’). It follows that A(r) and B(r)
commute with 7. In particular, the magnetic field operator retains the
same form in both representations:

B(r) = TB(r) T = B(r). (21

¢) POLARIZATION DENSITY AND DISPLACEMENT

To interpret the last term of (20) physically and to identify the variable
represented in the new representation by the mathematical operator E | (r)
given in (19), it is convenient to describe the localized system of charges
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by a polarization density P(r), and then, starting from the electric field
and the polarization density P(r), to introduce the displacement D(r). For
a more complete discussion of this problem not limited to the lowest order
in a/\ as here, the interested reader should refer to §C.1 of Chapter IV,
which can be read independently of the rest of that chapter.

The charge density associated with the system of localized charges ¢, is
written in real space as

pr) =5 q,6(r — 1) (22.a)

and in reciprocal space as

RRE .
pk) = <§—n> Y gpe M (22.b)

Since the charges are localized near the origin (Jr,| < @) and we are
assuming that the coupling with the radiation takes place substantially
with the long-wavelength modes (ka < 1), it is reasonable to expand the
exponential of (22.b) and to take only the first nonzero term (a lowest-order
calculation in a/A). One then gets using (9) and (4)

K 1\,
pk) = — <ﬁ> ik - d (23.a)
and by Fourier transformation

pr)y = — V- [ddI)]. (23.b)
Equation (23.b) suggests one introduce the polarization density

P(r) = d é(r) (24 .a)

corresponding to a dipole d localized at r = 0, as well as its spatial Fourier
transform

1 3/2
2k) = <ﬁ> d. (24.b)
Equation (23.b) is then written

p(ry = — V- P(r). (25)

The simple form of Equation (25) shows that if one introduces the
displacement D(r) defined by

D(r) = ¢, E(r) + P(r), (26)
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where E(r) is the total electric field, then Maxwell’s equationV - E = p/s,
and Equation (25) imply

V-D(r) =0 (27.2)

which shows that D(r) is a transverse field. Equation (27.a) can be
rewritten using (26):

D(r) = Dy(r) = ¢ E (1) + P.(r). (27.b)

The importance of D(r) rests with the fact that outside the origin P(r) is
zero [see (24.a)], with the result that, from (26), D(r) coincides with £, E(r).
Thus, D(r) is a transverse field which, outside the system of charges,
coincides with the total electric field to within a factor ¢,. Since the electric
field is purely retarded, it follows that the displacement outside the atom
is a retarded transverse field.

Return now to Equation (20). By transforming the discrete sum of the
last line into an integral we get

1 3 1 ik.r
- —jd‘k Y (2_71)_38(8 cd)el*r. (28)

o Lk

Comparison with (24.b) shows that (28) is just the Fourier transform of
—~ P (k)/¢,, so that Equation (20) can be written

E/(r) = E (r) — S—IOPL(r). (29)

Finally we calculate the operator D'(r) which represents the displace-
ment in the new description. Using (27.b), D'(r) is written

D) =TT =¢, TEMT" + TP (T . (30)
Using (19), (20), (29), and the fact that P, (r) commutes with 7, one then
gets

1 . . )
- D' = 16, lae,8"" —af g e ™. (1
0 ]

J

It appears then that the same mathematical operator, namely the linear
combination of a; and a; on the right in (31), describes two different
physical variables, depending on the representation used: the transverse
electric field in the initial representation, and the displacement (divided by
g,) in the new one. The advantage of the latter representation is that the
simple operator (31) describes a transverse field which outside the atom 18
purely retarded.
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d) THE HAMILTONIAN IN THE NEW REPRESENTATION

The Hamiltonian H’ in the new representation is given by

H = THT" . (32)

Here we are going to find the T-transformed expression for H given in
(13). The physical interpretation of the results will then be obtained by
attributing to the operators appearing in the expression for H’ the
physical meaning which they have in the new representation. The trans-
form of the first term of (13) is simply

p;
273m,

(33)

and according to (17) represents the kinetic energy of the particles. The
second term of (13) is an atomic operator which depends only on the
positions r, of the particles and is therefore unchanged in the transforma-
tion. It remains to find the transform of the third term of (13), that is, the
operator called Hy, in the initial representation and which describes in
that representation the energy of the transverse field. Using (18), we get

1
Hy=TH, T"* = TZh'w}(aj+ a; + §>T+
J

S hofta] + e+ 2 + 3]

= Hp +Y ho(l;a} + ifa) + ) ho; 2% ;. (34)
7 7

In addition to the operator Hy we get a linear operator in A, and A* and
a bilinear operator in A; and A*. Consider first the linear term, which can
be written according to (16) as

. hw,
—d-;l /280i3(a}-£j—a]-*sj). (35)

We get the scalar product of d (which is equal to d’, since r, = r,) with an
operator coincident with D’(0)/¢,. The operator appearing in (35) must
indeed be interpreted as the displacement (divided by g,), since we are
studying the Hamiltonian in the new representation. Thus for the term of
Hj linear in a, and a;, we get

. D)

o

-d (36)
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Consider finally the last term of (34). According to (16), it is equal to

Z ﬁwj )hj‘ }‘j = Z
j

3
kje; 2 &o L

g, - d). (37)

This term depends only on the operator d (equal to d’). Physically it
represents a dipole self-energy of the system, denoted E4ip- The expression
(37) for &4, seems to diverge. It fact, one must limit the sum to the values
of k; for which the long-wavelength approximation is valid.

By regrouping the various terms, one gets the following expression
for H':

35—+ Veou + &aip + 2. hwj(“f a; + %) —d- D(0)~ (38)
x (4 J ) :
The structure of the new Hamiltonian H’ is very simple. One has first a
purely atomic Hamiltonian representing the sum of the kinetic energy, the
Coulomb energy, and the dipole self-energy. Then one has a proper
radiation Hamiltonian Hy, and finally, an electric dipole interaction
Hamiltonian coupling the dipole moment of the system of charges to the
displacement at the origin 0. The fact that the new interaction Hamilto-
nian is purely linear in the field and no longer has quadratic terms (such
as H;, examined in §D.1 of Chapter III) is an important advantage of this
new description.

Remark

In the new representation, the energy of the transverse field is given by H} and
differs from H, by the last two terms in (34). Since the operators D'(r) /¢, (31)
and B'(r) (21) have the same mathematical form in the new description as E(r)
and B(r) in the earlier one, we have

12 12
Hy =+ (a0 220, B (ﬂ (39)
2 &o Ho |

(where gyc? is replaced by 1/p,).

3. Extensions

We are now going to examine two possible extensions of the treatment
above.

a) THE CASE OF TwO SEPARATED SYSTEMS OF CHARGES

Consider two systems of charges ., and &, localized about well-sep-
arated points R , and R, each of the systems being neutral. The transfor-



A3 Electric Dipole Hamiltonian 313
mation T which generalizes (14) is
i
T = exp{ — 2[4, AR +dp - AR,)] } (40)

d, and d, being the respective dipole moments.
The Hamiltonian in the Coulomb gauge describing this system is in the
long-wavelength approximation equal to

1
4, ARD]? + 3 5—[p; — 45 AR))]?
4 2 my, WP T »)]
+ VCoul + VCoul + lepdlp

1
+ Z hwi(“i+ a; + §> (41)

where VA4, ( Coul) is the Coulomb energy of the system of charges ¥,
(¥5), and lep aip 1s the electrostatic interaction energy between the
dipoles d , and dj of the two systems of charges.

The Hamiltonian H' = TH'T* in the new representation is gotten with
the aid of the transformation (40), and one finds it equal to

2

P
H = sz + VCouI +8d1p +Z

pﬁ
2m

DR, . DRy
B .

0 o

+ Hg — d; - (42)

The structure of the new Hamiltonian H’ is very simple. We have first of
all two purely atomic Hamiltonians for ¥, and ., representing in each
case the sum of the kinetic energy, the Coulomb energy (inside ., or
%), and the dipole self-energy. Then, we have a radiation Hamiltonian
Hp, and finally, an electric dipole interaction Hamiltonian coupling the
dipoles of ¥, and %, to the displacement at R , and R 5. The important
point is that there are no longer instantaneous electrostatic interaction
terms between the systems in (42). The term Vd/;dei has in fact been
compensated for by the dipole terms (37), which contain, besides the
self-energy terms sf}ip and sgip, cross terms simultaneously involving d
and d . The corresponding calculations are not detailed here, since they
are treated again in the general case in Complement C,. One can
however understand this point by noting that the new Hamiltonian
contains the coupling between the electric dipole moment d’, of %, and
the total displacement at R ,, D’(R ), which includes in particular the
displacement generated at R, by .%;. Now the displacement generated by
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S outside & coincides with the total electric field generated by %
outside .#,. It follows that the coupling term —d’, - D'(R ,)/¢, of (42)
contains the interaction of &, with the transverse electric field as well as
the longitudinal field created by &, at R ,.

b) THE CaSE OF A QUANTIZED FIELD COUPLED TO CLASSICAL SOURCES

In §A .1 above we have examined the coupling of a system of
quantized particles with a classical field. The opposite problem, which we
now treat, is that of a quantized field interacting with classical currents.
The Hamiltonian in Coulomb gauge for such a system has been given in
Complement By, [Equation (7)]: g

H = H, - J dBrijyr 1) - A (43)

The current j,(r, 7) is produced by classical particles with charge ¢,
whose positions and velocities are described by the classical functions
r,(¢) and §,(¢), with a given time dependence

Ja(r, ) =3, 4, 5,(1) O(r — r,(0) . (44)

If the charges creating the current are localized near the origin in a volume
of dimension a and if one considers only the dynamics of the modes with
wavelength long with respect to g, it is possible to simplify the interaction
Hamiltonian

Hy =~ Jd% Ja(r ) © A = = ) g, £(1) - A1) (43)

by replacing A(r,) with its value at the origin:

Hy~ = Y g0 A0) = — d() * A(0) (46)

d(1) being the electric dipole moment of the charge distribution, equal to
Y dar(1)- We then apply to the Hamiltonian
H = Hp — d(r) - A(0) (47)

a unitary transformation similar to the transformations in §§A .1 and
A2 and aimed at giving rise to an electric dipole interaction term.
Consider the transformation

T = exp{ - hid(z) . A(O)} (48)

analogous to (3) and (14), but where d(¢) is now a classical function
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depending on time and A(0) an operator acting on the radiation variables.

The transformed Hamiltonian is given by Equation (5). The calculation of

THRT" is identical to that presented in (34) and gives

D'(0)
€

TH, T = Hy — d(1) + egip (49)
where D'(0) /¢, corresponds to the operator of (31) evaluated at r = 0 and
where ey is now a classical function of time gotten by replacing the
operator d of (37) with the function d(7). Here TH ;T* is unchanged, since
H; commutes with 7. Finally the term in ih(3T/d0)T" is equal to
d(z) - A(0) and thus offsets H,; [see (46)]. The new Hamiltonian is then

D'(0)

o

H=Hy, —d(1 - + Egip - (50)
The last term here is a classical function of time and can eventually be
dropped.

Note that, just as in §Ay.2, D'(r) represents the displacement. The
interaction between the quantized field and the classical sources is thus, in
the new representation, proportional to the product of the classical electric
dipole with the displacement at the point about which the dipole is
localized.
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COMPLEMENT B,

ONE-PHOTON AND TWO-PHOTON PROCESSES:
THE EQUIVALENCE BETWEEN THE INTERACTION
HAMILTONIANS A - pANDE * r

We show in this complement that the transition amplitudes calculated
using the interaction Hamiltonians A - p and E - r are identical for a
resonant one- or two-phcton absorption process. The equality of the two
amplitudes is demonstrated by direct calculation of the evolution-operator
matrix elements. We examine various possible extensions of this demon-
stration and show, in particular, how a one-photon nonresonant process
can often be considered as part of a two-photon resonant process. This
allows the resolution of several paradoxes involving the equivalence of the
two Hamiltonians for calculating line shapes.

1. Notation. Principles of Calculation

Consider an atom at R = 0 which interacts with an incident wave
packet with central frequency w. The external field associated with this
wave packet is described by a vector potential whose value at R = 0 is of
the form

A0, 1) = A(r)g; = A(1) cos wt g, (D

where ¢, is the polarization vector of the wave and A(r) the envelope of
A(?) (see Figure 1). The transit time of the wave packet is characterized by
a time T which is of the order of the half-maximum width of A(t). We
assume that the field oscillates many times during T, that is, that

oT > 1. 2)

We propose to examine one- and two-photon resonant absorption
processes induced by such a field between two atomic levels @ and b such
that

E, — E, = ho (3.a)

a

and
E —E =2ho. (3.b)

respectively. To this end, consider the matrix element of the evolution
operator between a and b, (b|U(¢,, t;)|a), ¢, and t, being the initial and
final times for the transit of the wave packet (see Figure 1). It is clear that
(blU(t,, t;)|a) must present a resonant character for w,, = w or w,, = 2w
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VAW

0 T 0

1 I 1 !
-T2 0 T2 f

Figure 1. The shape of the envelope A(¢) of A(t). The duration 8 of the switching
on and off of the incident field is assumed small compared to the interaction time
T. Between —T/2 and +7/2, A(1) is constant and equal to 4,,. One assumes that
T and 6 are very large with respect to 1 /.

(we have taken E, — E, = hw,,). In fact, it is more appropriate here to
calculate the S-matrix, whose element S, is

Spe = lim (b |eH o™ Uy, 1) e Mot g &)
aslx
where H, is the unperturbed Hamiltonian (the atomic Hamiltonian in the
absence of an incident field).

Such a calculation can be made starting either with the Hamiltonian in
the Coulomb gauge or with the Goppert-Mayer Hamiltonian [see (B.33) of
Chapter IV or (8) of complement A ]. Let U'(t,,t,) be the evolution
operator in the new representation, leading to the new matrix S'. If we
assume that A(t) is zero for t < t, and ¢ > t, (Figure 1), the Hamiltoni-
ans and state vectors are the same in either representation for 7 < f; or
1 > t,. It follows then that the general treatment in Chapter IV (§B.3.4.1)
leads to the identity

Spa = Sia - &)

Rather than using this general proof here, we are going to calculate S,
and S;, and show directly, using the resulting expressions, the equality of
the two transition amplitudes.

2. Calculation of the Transition Amplitudes in the Two Representations
a) THE INTERACTION HAMILTONIAN A - p

Consider first the case of a one-photon resonant transition, w,, = w.
To first order in g and with the long-wavelength approximation, the
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matrix element §,, becomes
S :i _ 4 'Zdreiwbar<b|p.A(0r)|a> (6)
ba lh m . A

The resonant behavior of S,, near w = w,, comes from the term e '“7 of
cos w! appearing in Equation (1) for A(Q, 7). If one neglects the contribu-
tion of the term e'“"—which, in the neighborhood of w = w,,, is much
smaller and nonresonant—this gives

—_ 1 e J(T) (wpe— w)T
Sha = 15 Mha _[1 dr——e ‘(7-3)
where
_ _ 4 . - _ 4.,
Mba_ m<b|£i p|a> m(pt)ba' (7b)

We now calculate the value of S,, when A(r) corresponds to the curve
given in Figure 1, A(¢) increasing from 0 to 4, over the time interval 8,
remaining constant between — 7/2 and T /2, then decreasing from A, to
0 over the same interval #. When the interaction time 7, assumed much
larger than 8, becomes very large, the integral over 7 in (7.a) tends toward
a delta function of width 1 /7, denoted 87, and (7.a) can be written

2=

AO
a_ﬁM_—

ba 2
It is clear from (7.c) that S,, is only important at resonance.

Assume now that the levels @ and b cannot be connected by a
one-photon transition. For example, ¢ and b might have the same parity,
so that the matrix element of the odd operator ¢, - p between |a) and |b)
is zero. It is then necessary to calculate S,, to higher orders in g. To order
2, the contribution of the term g?A%/2m is, in the dipole approximation,
proportional to {(b|a) and thus zero. The second term of the perturbation
series for —gA - p/m gives

1\2 qz 12 12
Sba:<ﬁ> <_E> J, dtJtl dr'f(r — ) x

x @t Y [Chip - A1) [r>e 0 Crp - AWM T) a Y] e

®)

The sum %, is taken on all the intermediate levels which are coupled to
lay and |b) in the electric dipole approximation. 8(7 — 7’} is the Heavi-
side function, which is zero when 7 < 7’ and 1 when 7 > 7’. We have
taken w, = E,/h (i = a, b, r). By retaining only the terms in e '“" and

S 8w, — w). (7.c)
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e " for cos wr and cos wr’ which give rise to a resonance for w,, = 2w,
we get

1 2 q 2 + x + x
= [ — _ L ’ 2 all@ba— 200
Sie = (ih) < m) Jx dr J_x dv f(tr — t)e x

< Lok (), 2 A s )

To enable the integration in (9) to be carried out independently on 7 and
7', it is useful to introduce the following integral representation:

e _w)(r,f)() / 1 +x e—l!?(r ')
¢ (T—T):qﬁ—ijXdQ(Q—wmﬁ-w)ﬁ-ia (19)

where e is a vanishingly small positive number. Note that (10) can be
demonstrated quite simply by integrating the second term by residues.
Taking account of (10), Equation (9) becomes

Sba=<"> 2,“2(1:),,,(1)),“

hm
7 T i(wpa— 20— )t iQt
JJJdQ drdr A0 AE) e (11)

4 (2 - w +w)+1£

ra

Finally, we transform (11) by introducing the Fourier transform .« (£2) of
A(t) defined by

AQ) =

J A(r) e dr . (12)

mJoy
Equation (11) becomes

(4 V1 (D) A (o, — 20 — Q)
Sb“_<ﬁ_m> 72 (P (P deg @~ o, T o) T 1]

The function .7(£2) is centered about @ = 0. If the one-photon transi-
tions are not resonant (w — w, # ) and if the width of Q) is
sufficiently narrow, one can replace {2 by 0 in the denominator of (13) and
drop the factor ie. If A(¢) has the form represented in Figure 1, &7 (2)
appears like a peak of width 1 /T superimposed on a background of width
1/8. For the following calculations to be valid we assume |@ — w,,| > 1/8.
By using this approximation we find then

Sha = < > [Z P m’““ Rl L 29 79 g

h(a) - wra)

(13)

X
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It remains only to use the Fourier transform of a convolution product to

get
Sba = I% Qba j J dr{@ir ei(w,,,,—- 20y (1 5 . a)
with
Qru = (m> > ;,fuf”_(” e (15.b)

Comparison of the two transition amplitudes (7.a) and (15.a) shows
that things occur as if one had a perturbation [A()/2]*e~%“' coupling
the levels @ and b (via all the intermediate levels r) with an effective
matrix element Q,, given in (15.b). By taking for A(¢) the function
represented by the curve in Figure 1, we find

2 A,\?
Spe = 1_; Qba<_§9> 5(T)(wba —2w). (15.¢)

It is clear here that S,, is only important at resonance (w,, = 2w). S,, is
then a resonant two-photon transition amplitude.

Remark

Equation (15.a) shows that, in the case where one does not have an intermedi-
ate level r which can be resonantly excited by a one-photon process, the
transition amplitude involves the square of the vector potential rather than the
product of the vector potentials taken at two different times. This result arises
from the fact that under these conditions the two photons are almost simulta-
neously absorbed.

b) THE INTERACTION HAMILTONIAN E - 1

To compare the results from the two interaction Hamiltonians A - p
and E - r, it is necessary that A(z) and E(¢) represent the same field. From
the form (1) postulated for A(0, ¢), we get

E@©, 1) = [A(1) w sin w1 — A(t) cos wi] e; . (16)

Remark

It would be more satisfactory a priori to start with the time dependence of the
electric field, which is the quantity with a clear physical meaning, and then to
derive the time dependence of the vector potential. Such a procedure would
most certainly lead to equivalent results, but can also raise a problem. The fact
that the electric field is zero for #{ < 1, and #; > 1, does not assure that the
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vector potential will also vanish on the same time intervals. Since A(¢) is gotten
by integrating E(¢), A(r3) — A(¢]) can be equal to a nonzero constant. It is not
possible to nullify the interaction Hamilton A - p simultaneously for ¢ < r, and
t > t,. In the general case, this is only a formal difficulty. The electric field
oscillates a huge number of times between 7, and 1,, and the constant depends,
in fact, only on the contribution of a fraction of period whose relative effect
becomes negligible when T — o0.

The calculation of the amplitude Sy, is analogous to that in the preceding
subsection, the interaction Hamiltonian being henceforth equal to —gr - E,
where E is given by (16). Note that E is the sum of two terms and the
second term of E is, in order of magnitude, equal to [A4(r)/8]cos wt. It is
then on average smaller than the first by a factor wf, so that its
contribution in calculating the two-photon excitation probability will be
negligible. In the limit where T > 4 > 1/w, we can then follow the proof
in the subsection above and retain only the first term of (16). We then get
for the one-photon resonant transitions

Sta = 22 My, 22 6T, — ) (17.)
My = —iog(ble rlad = —iogry,  (7.b

which correspond to (7.c) and (7.b), and for the two-photon resonant
transitions

A 2
Spa = Zi—;Qb/a<70> 8wy, — 2 w) (18.2)
v (’ )br( )ra
Qpa = — Z o — o) (18.b)

which correspond to (15.c) and (15.b).

¢) DIRECT VERIFICATION OF THE IDENTITY OF THE TWO AMPLITUDES
We will start with
(Ppa = iy, M(ry)y, (19)
relating the matrix elements of the operators p and r [see (B.43)]. Compar-
ison of (7.b) and (17.b) gives, using (19),

w
ba
M, =

200, (20.2)

that is,
M,=M, if o,=w. (20.b)
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The two amplitudes (7.c) and (17.a) are then identical: at resonance the
equality results from (20.b), and off resonance, the delta functions being 0,
the transition amplitude is zero in the two representations.

We will now show that the two-photon amplitudes (15.c) and (18.a) are
identical. For this it suffices to show that

Qba = Ql;a lf wba = 2 . (21)
For this we use the identity (19) to transform (15.b). Q,, s equal to Qy,
only if
Wy, wra(ri)br (ri)ra _ 2 (ri)br (ri)ra
) w — w,, = ') w -, (22)

r r

To prove (22) algebraically, we introduce the difference D between the
two terms of (22):
2
Wy Wyq — w .
D =Y =y (1) (23)

r ra

and show that, when w,, = 2w, D is zero. The resonance condition
implies

Wy =20 — O, (24)
and thus

O — O = — (@ — )’ (29)

¥ ra

Wy,
D, defined in (23), can then be transformed into

D= — Z (U) - (/)m) (ri)br (ri)ra . (26)

Consider now the commutator [7;, p;] = ih, and calculate {b{r;, p,]la)-
We find

Z [("i)br (Pdra — (P (”i)m] =ih{blay =10 27

since [b) and |a) correspond to distinct eigenstates of H,. Using (19), this
yields

Z (wbr - U)ra) (ri)br (ri)ra = 0 . (28)

Using the two-photon resonance condition (24), we get finally

Z ((,l) - wru) (ri)br (ri)ra = O . (29)
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Comparison of (26) and (29) shows that D = 0, which implies that
Q,. = 0/, 1f w,, = 2w, and thus the equality of the amplitudes S,, given
in (15.c) and S/, in (18.a).

Remarks

(i) In everything above we have only calculated amplitudes. To get the transi-
tion probability from a to b it is necessary to take the square of the modulus of
(7.c) or (17.a) for a one-photon excitation and of (15.c) or (18.a) for a
two-photon excitation. One then gets the square of a function 8§7'(x). To
within terms in 8/T that are negligible because we have assumed T > 6,
8T (x)is

1 sin xT/2
n X '

+7T;2
3M(x) = o [ e dr =
n

V-T2

(30)

We conclude that [87(x)]? is a function equal to T2/4x at its maximum (at
x = 0), and whose width is of the order of 2#/T. The area under this curve
being proportional to T, we can see that for large T, [§/7)(x)]? is proportional
to T87)(x). A more precise calculation starting from (30) gives

It then appears that near resonance, i.e. for w,, = w or w,, = 2w, the transi-
tion probability from a to b, |S,,|> = |S.,|*, is proportional to the duration of
excitation, T, which allows us to define the transition probability per unit time,

S 2 S/ 2
Wha = ‘ "’Itf' = | }"I‘I| . (32)

For resonant one-photon transitions, using (7.c), (17.a), and (31), one gets

Woa = %ﬁ( > | M, |? 6 "(hes,, — ho)
2,1”( ) | My 12 6Py, — o) (33)

where 87)(w,, — w) has been replaced by #8")(hw,, — hw), and for the
two-photon resonant transitions, using (15.c), (18.a), and (31),

Wha = 27”( > | Qba |2 O(T)(hu)ha - 2 h(l))

"'h”( ) 10y, 3 (hen,, — 2 o). (349

The results (33) and (34) have a form analogous to that of Fermi’s “golden
rule”
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(i) In practice it is often impossible to perform exactly the summation on all
the intermediate levels in the series (15.b) and (18.b). It is thus useful to know
which equation gives the best approximation when the sum is limited to a few
intermediate levels. In the case of a two-photon transition between two bound
levels, the equation derived from the interaction Hamiltonian —gr - E will
most often give the best approximation if one restricts the sum to the essential
intermediate levels. This holds because the ratio of the two terms corresponding
to a given intermediate level and derived respectively from the Hamiltonians
A-pand E - ris (w,,0,)/w. All the levels situated above the levels |a) and
[b) (see Figure 2) have a more important contribution in the series correspond-

mmm

Figure 2. Two-photon resonant transitions between the levels a and b. The
nonresonant levels 7, #,,... are the intermediate levels.

ing to the Hamiltonian A - p than that in the series corresponding to E - r.
Since the two sums are equal, it follows that the convergence of the first series
is generally slower than that of the second. A classic example of this is the
1s—2s hydrogen transition (*). If one limits oneself to the 2 p intermediate level
in the sum, one gets zero with A - p, and the value gotten with E - r has a 50%
error from the exact result. If the sum is taken on the first three p-levels
(2p,3p,4p), one gets with E - r a result with a 20% error, while with A - p this
sum is three times smaller than the true value. (See Exercise 2.)

(iii) The equality between the transition amplitudes at resonance is only true if
exact wave functions are used. With approximate wave functions for the states
|b) and |a), different results can be obtained from the two points of view. One
of the two interaction Hamiltonians may give more accurate results than the
other one for a particular type of approximate wave functions.

(*) The contribution of each intermediate level in the A - p and E - r approaches has been
studied by F. Bassani, J. J. Forney, and A. Quattropani, Phys. Rev. Lett., 39,107 (1977).
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3. Generalizations
a) EXTENSION TO OTHER PROCESSES

The discussion above can be extended to other processes, for example
two-photon resonant absorption, where the atom interacts with two elec-
tromagnetic fields with different frequencies w, and w,, the resonant
condition becoming w,, = w; + w,. In this case, two types of amplitudes
appear, corresponding to different time orders for the two interactions,
either first with w, and then w, or in the reverse order. It is only when the
two time orders are taken into account that the predictions with A - p and
E - r agree.

Other important examples of two-photon processes are scattering pro-
cesses: an incident photon vanishes, and a new photon «’ appears while
the atom goes from state @ to a’. Resonance is then given by E, + hw =
E, + ha'. Exercise 7 proposes a direct proof of the equality between the
two transition amplitudes by using the general expression for these ampli-
tudes given by (D.3), (D.4), and (D.12) of Chapter IV.

Other processes involving more than two photons can also be treated.

b) NONRESONANT PROCESSES

The equality of the transition matrix elements M,, and M/, given by
(7.b) and (17.b) for the one-photon transitions and Q,_, and Q;, given by
(15.b) and (18.b) for the two-photon transitions and derived from the
Hamiltonians A - p and E - r is only valid at resonance. The direct proof
in §By.2 above rests on the use of Equation (19) and on the resonance
conditions (3.a) or (3.b), which express the conservation of energy. Recall
also that the general reasoning of Part D concluded with the identity of
the transition matrices on the energy shell.

What happens when one goes away from resonance? One can easily
imagine, for example, that an atom is excited from a state a by a photon
hw which does not have the requisite energy hw,, to transfer the atom
into an excited state b. If the states ¢ and b are stable, the transition
probability per unit time (33) is zero when w # w,, because of the delta
function. If level b is unstable and has a width I, it can be tempting to
generalize (33) by replacing the delta function 8"'(hw,, — hw) with a
Lorentzian with width #I". However, such a step immediately leads to
difficulty, since the matrix elements M,, and M/, are not equal when
w # w,, [see (20.a)]. The two lines of (33) are then not equal. Can one
imagine, for an off-resonance excitation, nonidentical transition probabili-
ties in the two approaches?

The answer is clearly no. The use of the S-matrix to find the transition
rate assumes implicitly that the duration of the interaction with the
electromagnetic field has been sufficiently long so that the uncertainty in
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the definition of its frequency will be smaller than I'. This implies that the
duration of the process has been much longer than the lifetime of the level
b. 1t is therefore incorrect in this case to calculate the transition probabil-
ity into b, since the latter is disintegrating to other states, for example, by
spontaneous emission. The real process then is not a one-photon transi-
tion to an unstable state b, but rather a two-photon Rayleigh (Figure 3a)
or Raman (Figure 3B) scattering, the atom ending in a final stable state

a’ ().

b ————— b ——

hao hw () ho hay (5
da g ; a’ g
a a

Figure 3. Nonresonant excitation. In the complete process, the incident photon
hw disappears and a new photon appears (a) at the same frequency (Rayleigh
scattering) or ( B) at a different frequency (Raman scattering).

In seeking to define in a precise experimental fashion the absorption of
a nonresonant photon, we are then led quite naturally to substitute for a
nonresonant one-photon process a two-photon process conserving energy,
for which we know that the transition probabilities are identical in the
A - p and E - r approaches. It would be incorrect in this case to calculate
the nonresonant one-photon amplitudes, since the “final” state in these
amplitudes, that is, an atom in state b, is not a true final state, but rather
an intermediate state. It should be also noted that the amplitudes associ-
ated with the processes in Figure 3a and B involve a summation on all the
intermediate states b. Even if a particular excited level is very near
resonance, neglecting the other states would lead to erroneous predictions
and different results for each representation. The nonresonant process
being only one step in a higher-order process, it is not possible to state
with certainty through which intermediate level the atom passes, and only
the sum on all the possible *“paths” has physical meaning.

(*) An analogous problem is analyzed by G. Grynberg and E. Giacobino, J. Phys.. B12.
193 (1979), and by Y. Aharanov and C. K. Au, Phys. Rev. A 20.1553 (1979).
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Another important, often studied example is the line shape of the
25, ,,-2p, ,, hydrogen transition (*). We review the experimental situation
briefly. Hydrogen atoms initially in the metastable 2s, ,» state are sub-
jected to a microwave with frequency w near that of the 2s, 2P
transition, w,. The microwave resonance is detected by the Lyman-a
photons spontaneously emitted in the 2p, 218y, transition. As stated,
the experiment seems to involve only the states 2s, 2 oand 2p, 5.0 A
calculation limited to these two states does not, however, give the same
results in the two representations A - p and E - r for the line shape, that is,
for the variations with w — w, of the 25, ,-2p, ,, transition probability.
This anomaly is due to the fact that the 2p, ,, state is not a true final state,
but an intermediate state among others in a two-photon resonant process,
which consists of an induced emission of one photon w and a spontaneous
emission of one photon ' with frequency near that of Lyman-«, the
resonance condition being hw + hw’ = E(2s, ;) = E(ls, ,,), as shown in
Figure 4. Even if the 2p, , level appears to have a major importance in
the two-photon emission process, it is wrong to neglect the contribution of
the other intermediate np levels (**).

25,

’ A
fics :fm)o
2py, — *

hay

ls,,

Figure 4. The nonresonant transition between the 2s, ,2 and 2p, , states, the
Lamb transition. The stimulated emission of the microwave photon Aw is accom-
panied by the spontaneous emission of the ultraviolet photon hw’.

(*) This problem was raised by W. E. Lamb, Phys. Reuv.. 85, 259 (1952).
(**) See Z. Fried, Phys. Rev. A, 8, 2835 (1973).
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COMPLEMENT C

INTERACTION OF TWO LOCALIZED SYSTEMS OF
CHARGES FROM THE POWER-ZIENAU-WOOLLEY
POINT OF VIEW

The Power—Zienau-Woolley transformation has been presented in
Chapter IV for the case where the positions of all the charges are
measured from a single point of reference, taken as the origin. The
generalization to the case of two subsystems &, and #p, spatially
separated and localized about two different points R, and R, respec-
tively, presents no difficulties. We give in this complement the
Power—Zienau—Woolley Hamiltonian for such a system with the assump-
tion that %, and %, are both globally neutral. The essential motivation
of this complement is to show that in this new Hamiltonian, all the terms
describing instantaneous interactions of the particles of &, with the
particles of %, have vanished. The two systems interact solely via
retarded fields: the displacement and the magnetic field.

1. Notation

The charges of the system .%,, denoted by index a, are grouped about
point R ,; their positions with respect to this point are denoted s

Szzrz_RA' (1)

Similarly, the charges of the system &, denoted by index B, are confined
about R, and their positions with respect to this point are denoted s;:

s, =1, — Ry. (2)

The charge distribution of &, can be described by its total charge in R ,,
which we have assumed zero, and by its polarization density

1
PA(r)=ZJ dug,s, o(t — R, —us) 3)
= Jo

which generalizes (C.2). The longitudinal electric field created by &, is
given by (C.11):

1
E = — E; P, (r). 4

Analogous expressions can be written for the polarization Pg(r) of the
system %, and for the longitudinal electric field created by .
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The total polarization density P(r) is the sum of the polarizations
relative to &, and %:

P(r) = P,(r) + Pgr). ()
Likewise, the total magnetization density is the sum of the contributions
of ¥, and &:

M(r) = M ,(r) + My(r). (6)

2. The Hamiltonian

In Part C of this chapter, we have derived the Power-Zienau-Woolley
Lagrangian (C.26) by adding d F/d¢ to the Lagrangian in the Coulomb
gauge, F being given by (C.20):

F=— [d3r P(r) - A(r). (7

In this case, with two localized systems of charges, it is necessary to use
the same transformation, but P(r) is now the total polarization given in
(5). All the results gotten there remain valid under the condition that we
replace P(r) and M(r) by their expressions (5) and (6). We get, in
particular, for the Hamiltonian the following generalization of (C.37):

1 1 i
= 227|jp11} - J\ Mdu qa B(RA + usi) X S“} +

0

+2

t 2
> Ty [pﬁ,, — J udu gy BRy + usy) X sl;’ +

0

| T, + P, + P,
3 L 14 1B . 212 2 .
-+ fd k[ 80 + 1‘0 c k | 'd | +§ ’géoul +§ 6g0u1 +

4 4 s dp- 9x 4
_ . (8
e dmey |, — 1, B;,,4nao|rﬁ—rﬁrl %4n30|r1—rﬂf ®

The different terms of H’ can be regrouped as follows:
Hp. = Hy. + Hfp + Hfj. + Hf + HE + VA2 9)

Hp,. is identical to the Hamiltonian (C.39). H;i. and H/. are the copies
of the interaction Hamiltonian (C 40) for the systems %, and ¥ respec-
tively. Likewise, H;, and Hp,. are the respective Hamlltonlans of the
particles in ., and %, given by expressions analogous to (C.38). The
only new term is

e (10

1 J % 7
yAR = Ejmk[ypu "+ Pl Pl Z471'30
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This is the sum of a self-energy term for the transverse polarization and
the Coulomb interaction energy VAE between the charges of &, and
those of #.

We are now going to show that V4% is identically zero. To this end,
note that the final term of (10) can be written

AB _ Tot AA BB
VCoul_ VCoul - VCoul - VCoul

&o
= 7Jd3”[(EA + EHB)Z - EﬁA - Eﬁa]

= g Jd% E , E;. (11)

Using (4) and the analogous expression for E, 5, we get finally
1
Ves, = E—JdSVPA “Pyp (12)
0
with the result that (10) can be written in real space as

yAB = %Jd3l'[PlA(r) “Pg(n) + P - P ]
= Eijd"r P,(r) - Pyr). (13)
0
Since P,(r) is rigorously zero outside %, and Pg(r) outside &. we see
that V28 reduces to a contact term which is zero when the distance
IR, — Ry| is greater than the sum of the radii of the two systems of
charges. Thus, in the new approach, there is no longer an instantaneous
Coulomb interaction between two separate, globally neutral systems of
charges. The interaction between these systems is only via the fields B(r)
and II,.(r), which propagate between the systems with finite velocity c.
(Recall that outside a system of charges, Il;. corresponds to the total
electric field to within a factor —¢gg).

Remark

The results above can be generalized to the case where the systems of charges
&, and ¥, are not globally neutral. It is then necessary to add to V4% the
energy of the polarization density of &, in the static field produced by the
reference distribution p,, of &, and the symmetric term, as well as the
Coulomb interaction energy between the reference distributions p,, and pys.



Dyy.1 The Poincaré Gauge 331

COMPLEMENT Dy,

THE POWER—ZIENAU—WOOLLE\'( TRANSFORMATION
AND THE POINCARE GAUGE

We are going to show in this complement that when the polarization of
the system of charges is defined with respect to a single reference point,
the Power—Zienau-Woolley transformation reduces to a gauge change
from the Coulomb gauge (V - A = 0) to the Poincaré gauge, in which
A'(r) is everywhere orthogonal to r. Furthermore, in this new gauge, A’
and U’ can be simply expressed as functions of the B and E fields. The
expressions for A" and U’ generalize the expressions A = B, X r/2 and
U= —r- E, valid for uniform static fields B, and E,.

1. The Power-Zienau-Woolley Transformation Considered as a Gauge
Change (¥)

In a gauge transformation defined by a function x(r, t), the potentials
become

A'(r, 1) = A(r, 1) + Vi(r, 1) (1.a)
U'r 1) = U 1) = 5 4. 1). (1.b)
The Lagrangian is also transformed and becomes [see (B.11)]

L' =L+ %[g qy x(r,, t)] 2

We know, in addition, that the Power-Zienau-Woolley Lagrangian can
be derived from the standard Lagrangian L in the Coulomb gauge by the
transformation (**) [see (C.20) and (C.22)]

L'=1L- %jd% P(r) - A, (r). 3)
By using (C.2) for P(r) we get
d 1
L’:L—EZ%J dur, - A (r,0). (4)
x 0

(*) R. G. Woolley, J. Phys., BT, 488 (1974); M. Babiker and R. Loudon, Proc. Roy. Soc.,
A385, 439 (1983).
(**) We reintroduce the notation A |, since in the Poincaré gauge A’ is no longer
transverse.
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It is clear that (2) and (4) can be made identical if one takes for x(r, t) the
following function:

1
1) = — J dur - A (vu). (5
0

[The dependence on ¢ of the function x(r,t) is associated with the
temporal variations of the dynamical variables A | (r).] Note that we have
introduced the gauge function (5) by using the definition of the polariza-
tion (C.2) valid for a system of charges referred to a single reference point
(the origin). In the case where the system of charges involves several
subsystems localized about several different points R, Rp,... (as for
example in Complement Cyy), the proof above cannot be generalized. The
expression which generalizes (C.2) is then

P(r) = ZJ dugr, — R)S[r — R, — u(r, — R)] +

* Jo
1
+ %j du gg(ry — Rp) 6[r — Ry — u(ry — Rp)] + -+ (6)
0

where the index a designates the particles localized about R, and the
index B those localized about R ;. When one substitutes (6) in (3), one
discovers, because of the multiplicity of reference points, that the match-
ing of (2) and (3) is no longer possible. The Power—Zienau-Woolley
transformation reduces to a gauge change only if all the charges are
localized about a single reference point. In this complement we treat only
that situation.

2. Properties of the Vector Potential in the New Gauge

In the new gauge, the vector potential is no longer transverse, since we
find using (1.a) and (5) the following expression for A/

1

Al(r) = —VJ dur- A (ru). (7.a)

0

The transverse part A | of A’ remains unchanged:
A(r) = A (n). (7.b)
We take now the scalar product of r and A’,
r-A(r) =r-A(r) + 1 Ayr)

=r-A(r)— J du(r - V) (r - A (ru)). (8)

0
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To transform (8) we use the identity
o)
U= fru) = (£ + V) f(rw) ©)

which allows us to rewrite (8) in the form

1
r*A(ry=r-A(r) — J du%(r - V) (ru - A (rw)

0

1 )
=r-A(r)— J du%[ru A (r)]. (10)
o ’
The integral in Equation (10) is found immediately; its value {—r - A | (1)]
exactly cancels the first term of (10), so that

r-A(m=0. (11)

It thus appears that the new vector potential is everywhere perpendicu-
lar to the vector r. The new gauge, called the Poincaré gauge (*), appears
in some ways as symmetric with the Coulomb gauge: in the former, 7 (k)
is normal to k at every point k, whereas in the latter, A'(r) is normal to r at
every r.

3. The Potentials in the Poincaré Gauge

A major interest in the Poincaré gauge is that the potentials are easily
expressed as a function of the magnetic field B and the electric field E. We
are going to show that

1
A(r) = — J udur x B(ru) (12.a)

0

1
U'(r) = —J dur - E(ru). (12.b)
0

It is already interesting to note that these potentials generalize the
well-known potentials for a uniform magnetic field A, = —r X B,/2 and
a uniform electric fleld Uy = —r - E. It is also clear that (12.a) satisfies
the orthogonality relation (11) between A’ and r.

We now detail the process for getting (12) from (1) and (5). First of all,
consider the scalar potential. In the Coulomb gauge,

E (r)= - VU() (13)

(*) B. S. Skagerstam. Am. J. Phys.. 51 1148 (1983).
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U(r) can thus be gotten to within a global constant, as the line integral of
—E, along the line joining the origin to r:

Uy = — J d(ru)  E(ru) . (14
0

Using (1.b), (5), (14), and the fact that E, = —A  , we get

1 1
U'(r) = — j dur - E\(ru) — j dur - E (ru)

0 0

_ j dur - E(ru). (15)

0

We now examine the vector potential and find first the gradient of x
which appears in (1.a) for A"

1
Vy(r)y= -V J dur - A (ru)

0

- J du A, (ru) — ), j dur, VA, (ru). (16)
0 i Jo

Integration of the first term of (16) by parts gives

1 1 1 ~
— J du A (ru) = — uA (rv) | + j du u % A (ru)
0 0

0

—AD + J du(r + V) A, (ru) (17)

0

where the second term has been gotten using (9). We now use (1.a), (16),
and (17) to get A’. Since the first term of (17) cancels the first term of (1.a),
we obtain

I

1
A'(r) [ du[(r - V) A (ru) — Z 2 VAM(ru)]

“0

1
— j dur x (V x A (rv)). (18)

0
It suffices then to note that

V., x A(rw) = uV,, x A (ru) = uB(ru) (19)
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to get finally

1
Ary = — J udur x B(ru) (20}

0

which is the expression sought (12.a).

Remark
It is possible to show directly from Equations (12) that

V x A'(r) = B(r) (21.2)
= VU'(r) — A(r) = E(r). (21.b)

The vector and scalar fields A’ and U’ then define a gauge. In addition, it is
clear from (12.a) that A'(r) is everywhere orthogonal to r. We will show that this
latter condition uniquely defines the Poincaré gauge to within a constant.
Assume that another gauge {A”,U”}, related to the first {A, U’} by the
function x’, has the same property. The relation A” = A’ + Vy', along with
A” -r=0and A’ - r = 0, shows that

revy =0 (22)

which gives in spherical coordinates

’

A _y. (23)

cr

The function x’ at any point in space is then equal to its value at the origin and
thereby reduces to a constant.
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Exercise

Exercise

Exercise
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Exercises Ew.1

COMPLEMENT E
EXERCISES

An example of the effect produced by sudden variations
of the vector potential.

Two-photon excitation of the hydrogen atom. Approxi-
mate results obtained with the Hamiltonians A - p and
E-r

The electric dipole Hamiltonian for an ion coupled to an
external field.

Scattering of a particle by a potential in the presence of
laser radiation.

The equivalence between the interaction Hamiltonians
A-p and Z - (VV) for the calculation of transition
amplitudes.

Linear response and susceptibility. Application to the
calculation of the radiation from a dipole.

Nonresonant scattering. Direct verification of the equal-
ity of the transition amplitudes calculated from the
Hamiltonians A - pand E - 1.

1. AN EXAMPLE OF THE EFFECT PRODUCED BY SUDDEN VARIATIONS OF THE
VECTOR POTENTIAL

Consider an atom located at R = 0 and whose states |a), |b),... have
energies £, E,, ... .

a) This atom interacts with a field whose vector potential at R = 0 is

A0, 1) = A1) e cos wf (N

with A(1)=0 for t < —T/2 and t> T/2 and A(1) = A4, for
—T/2 <t<T/2. Find the transition amplitude from la) to |b),
U, (T"/2,—T/2), to first order in the field, using the Hamiltonian
—(g/m)p - A (0, ¢). One takes 7" > T.

b) Assume now that the atom interacts with the electric field

EX0, 1) = wA(r) e, sin wi. )



E,.1 Exercises 337

Find the transition amplitude U] (T"/2, — T’ /2), to first order in the field
using the Hamiltonian —gr - E,(0, 1).

¢) Show that at time = —T'/2, the ket |a) represents the same
physical state from both points of view. Show that this same property is
also true for the ket |b) at T’/2. Compare the transition amplitudes
calculated in a) and b). Why are these different when w # w,,?

Solution

a) Applying first-order, time-dependent perturbation theory, we find in the interaction
representation

T, s l / T 2 )
U”“(?' — —2—) = — ( - i) {Chip.lay A, ( dr e'* cos wi

ih m
dora
1 q> (sin(wb —w) T2  sin(w, + ) T2
= —|-= blp. A < 4 .
i ( n Chip-tad A (y, — @) + (0, + )

b) Proceeding in the same fashion with the Hamiltonian —gr - E,(0, ), we find @)

72
oy ! 10 H
Lh,,(~2—, — 7) = fﬁ(- @y<{blzla)wA, [ Tzdte el gin it

sin(w,, —w) T2 sin 0) T:2
= - g<b|:|a>wAU(1 (0, — @) _osin{wy, + @) T, ) @

(0 — ) (wy, + o)
¢) At times —T'/2 and T"/2, the vector potential A, (0, 1) is zero. The operator p/m
then represents the velocity variable, and the particle Hamiltonian is associated with the
same physical variable, the sum of the kinetic and potential energies, in both A - pand E - r
descriptions. It then follows that |a) and |b) represent the same physical states in both
approaches at —7"/2 and T"/2. If A,(0, ¢) and E.(0, ¢) correspond to the same field, the
transition amplitudes U, (7"/2, —T"/2) and U; (T"/2, ~ T'/2) should be identical from
(A.47), whatever w is.
Now, if we transform (3) using (B.43) relating the matrix elements of p- to those of z, we
find

(T T q sin(w,, — w)T,2  sin(m,, + w) T:2
U — - — = - 1 - I het
bu( ) ) 7 Chlzlay wy, Ao( s + T (5

which obviously does not coincide with (4) when w,, # w. This difference is a result of the
fact that A (0, 1) and E.(0, 1) do not represent the same field. More precisely

EL0. 1) # — A0, 1). (6)

The difference between — A, and E, arises from the discontinuities of A,(0,¢r)at —T/2 and
T/2, which introduce into A, the functions 8(s + 7,/2) and 8(1 — T,/2). The field E.(0, 1)
associated with A (0, r) is written

E 0.1) = EQ0, 1) + Aje (51 — Ti2) — 3(t + T 2))cos T 2. (7
The second term of (7) gives a contribution Uy/,(T"/2, = T"/2) to the transition amplitude,
equal in first order to

(T T ] i T\ _oT
er,(7, — —2—> = E(f q)<I)|-|a>A0(2|sm (v)h”3>cos 3

= — % Chlzla) Aglsin(oy, — @) T2 + sin (o, + @) T/2] (8)
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which one can then write

T T ¢ Oy = W .
Lv“"(?’ - T) = — —;I Chlzlay A()[—”i—(!) sin (e, — ®) Ti2 +

Wpy,

+ Oy + O sin (o, + @) T,2‘|4 9)
Wy, + @ )

By adding (4) and (9), one finds a result identical to (5). This shows that the transition
amplitude is the same in the two approaches at resonance and off resonance provided that A,
and E, correspond to the same physical field.

2. TWO-PHOTON EXCITATION OF THE HYDROGEN ATOM. APPROXIMATE
RESULTS OBTAINED WITH THE HAMILTONIANS A - P AND E - R

The purpose of this exercise is to compare various approximations used
in the calculation of the two-photon excitation probability of the
metastable 2s level of the hydrogen atom from the ground state 1s.

One recalls that when an atom interacts with an incident wave of
frequency w, it can be excited from a state |a) to a state |b) when
E, — E,= 2hw. The transition amplitude is proportional to an effective
matrix element whose form in the case of a wave polarized along the
z-axis is

ChlzfryLrlzlay

— 42 S~
Qba - q Zr:(uhr Wy h((l) - w,, (1 ~a)

in the A - p picture, and

0 - _ oy SBlEI izl

r h(U) — Wy

(1.b)

in the E - r picture (see §By.2). The values of Q,, and Q;, are equal
when one sums over all the intermediate levels |r), but can be different if
the sum is limited to a finite number of intermediate levels. It is then
important to know which result is closest to the exact result.

a) Show that the only discrete states which contribute to the sums (1.a)
and (1.b) in the case of the 1s-2s transition are the np, m = 0 states (one
ignores the electron spin here).

b) Evaluate the contribution of the discrete state np, m = 0 to the
sums (1.a) and (1.b). One writes this contribution in the form
2

a2 2
q 3E1a0‘]n (2)

for the sum (2.a), and in analogous fashion where J, is replaced by J;, for
the sum (2.b) (a, is the Bohr radius, and E, the ionization energy of the
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hydrogen atom). Express the dimensionless quantities J, and J, as
functions of »n and of the radial integrals

Jdr r3 Rn'[’(r) Rnl(r) = aO R:l'l/ (3)

involving the hydrogen radial wave functions (see the end of the statement
of this exercise).

¢) Compare the approximate values obtained for @,, and @, , taking
into account only one intermediate state, 2p, or the two intermediate
states 2p and 3p. Compare these approximate values with the exact value
taking into account all of the iniermediate states in the discrete and
continuous spectrum (*),

2
Qha:Q[;u_ q 3E aO X(llg) (4)

d) A frequently used approximation to find the sums appearing in (1.a)
and (1.b) involves replacing all the energy denominators A(w — w,,) by a
single one, which will be denoted by xE,, where x is a dimensionless
quantity. Show that Q; and Q,, are then respectively proportional to
(2s|r?|1s) and (2s|p?|1s).

Take x = —0.5. Is this a reasonable choice? Now find Q,, and Q;,
and compare the results with the exact result.

Data for the hydrogen atom:

— The energy of a state nim: E, = —E,/n”.
— A few radial wave functions:

R, o(r) = 2ag)” 32 e~ (5.a)
Ryo(r) = 22 ag) 32 (1 — (r/2 ag))e "2 . (5.b)

— A few radial integrals (**):

. 2ln— 1y
Rl(l) = 24 ’17’2(7_’_—])";_(—5-'/_2_) (6a)
Ry =28 n"% /2(n? l)(42;nﬁ pour n # 2 (6.b)
21 /2
Rj, = - 33. (6.¢)

(*) F. Bassani, J. J. Forney, and A. Quattropani, Phys. Rev. Ler., 39, 1070 (1977).

(**) H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One- and Two-Electron
Aroms, (§63), Springer-Verlag, New York, 1957.
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Solution

a) The vector operator r can only couple an s-level (/ = 0) to a p-level (/ = 1). The
levels r of the sums (1.a) and (1.b) are then necessarily the p-levels. The calculation of the
matrix element (r|z|a) is broken up into a product of a radial integral and an angular
integral which is nonzero only for m = 0. More precisely, in the case of a discrete
intermediate level,

{rizla) [’_2 dr dQ R, (r) YT(B, @) r cos 0 R y(r) Y56, @)

nl
[dr R, (r) R, o(r) [dQY'{‘((), @) cos 0Y2(0. ) = R‘—‘%“—Oém_o . @
B v

In an identical fashion, we find

Chisiry = Bibdag ®)
Y

b) The contribution of an intermediate level to the sum (1.b) is

, , L <bhlzlrylrlzlar

= — ~ sz 9
Qralr) q v oo — 0. )
The product of the matrix elements is calculated from (7) and (8). To find the cnergy
denominator recall the two-photon resonance condition

E 3
2ho =~ Z 4 E =K (10)

Hence hw = 3E,/8. With hw,, = —(E;/n*) + E;, we can write (9) in the form
2 2 4G Ri RY

R
Comparing this expression with (2), we get

nl nl
Rl() RZO

s Ui L By 1
I N 12
g n?

Between an element of the sum (1.b) and the corresponding element of the sum (1.a), there is
a multiplying factor (wy,w,,/w’). The relationships £, = — E,/n° and hw = 3E,/8 permit
the calculation of the factor

o 0, ER (1 1)(1 (8>2(1 1)( 1)
TR T LS Y= (8Y (- . 3
w? R w? (4 at I\n? : 3/ \4 A%, ! n? (13

and lead to
_ ,SYI 1)(71‘)
J,,ffjn(g (pr L= (14)

¢) To calculate J, and J; (n being 2 or 3), we calculate the necessary radial integrals
using (6.a) and (6.b). We find R =129, R3} = 0.52, and R3L = 3.06. R3} being given by
(6.c). Substituting these values in (12) and (14), we find J; = 17.9. Ji=-31,J,=0.and
Jy =27

These results are given in the following table, which includes also the contribution of the

other intermediate np levels in order to clarify the discussion.
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The contribution of the intermediate levels to the two-photon
transition amplitude between the 1s and 2s levels

A-p E-r
Hamiitonian  Hamiltonian

Exact result

(including continuum) 11.8 11.8
1 intermediate level, 2 p 0 17.9
2 intermediate levels, 2 p,3p 2.7 14.8
3 intermediate levels, 2 p,3p, 4p 36 141
10 intermediate discrete levels,

2p,3p,...,11p 45 13.5

It is clear from this table that, if a partial sum is used, the most satisfactory results are gotten
from the E - r Hamiltonian. For example, J; + J; differs from the exact result by only about
25%. Note that in the E - r description the contribution of the 2 p level has a sign opposite to
that of the more excited states. In this description, the sum on all the discrete levels is equal
to 13.4, the contribution of the continuum being equal to —1.6.

With the A - p Hamiltonian, the sum on two intermediate levels leads to a very poor
result, differing from the exact result by about one order of magnitude. Even if one takes into
account all the discrete levels, the result (4.7) is still far from the exact result. This comes
from the contribution of the continuum (7.1), which is predominant in this representation. It
is related to the factor w,,w,,/w?, which favors the highly excited states and causes a much
slower convergence in the summation over the intermediate levels.

d) When all the energy denominators are replaced by xE;, Q;,, becomes

/ ‘1
One =

clay

g m)<b\12|a>
3E X

q w?

= - <blzla)— (

(15)

since the levels |b) and |a) are s-states and thus rotationally invariant. To use the closure
relation in an analogous way for the case of Q,,,, it suffices to express the matrix element
{rlz{a) as a function of (r|p.|a) using (B.43). We find then

O, = m Ao —

Ura

¢? 5 Chlp. Ir><r11).la>
z'

2

1

I 2
> E T Clpla) = i Ch IR ) (6)
or finally

¢13> 24° < 1! B (42)212(‘2(1< ’1 >
= — (b= ={s—= |2 b= 17)
Ore <3 E,/ 4 ney, mx r ‘ “ / 3E, X r e (

since the matrix element of Hy = (p*/2m) — (g*/4me,r) is zero between the orthogonal 1s
and 2s states.

For the discrete intermediate levels, the energy denominators vary between — $E; for
n=2and — }E, for n= oo, the value —0.5E, being a reasonable compromise. Note
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however that this approximation overestimates the contribution of the continuum intermedi-
ate levels, for which the denominators have a modulus greater than 3 E, (and a fortiori than
0.5E)).

By taking x = —0.5 and using the radial wave functions (5.a) and (5.b) we find from (15)
and (17)

2
B 2 (07} 2
o= ag x (6,0) (18.a
Qh q 3El o] )
0, ~ — qziaé x (23.8). (18.b)
3E,

If one compares these approximate results with the exact result (4), one sees that the
amplitude gotten in the E - r description is two times too small, while in the A - p description
it is two times too large. In both cases, the use of a unique energy denominator increases the
contribution of the most excited intermediate levels and most particularly that of the
continuum. In the E - r representation, the contribution of these levels has a sign opposite to
that of the predominant 2 p level. It is then reasonable that the result in this approximation
will be smaller than the exact result. On the other hand, in the A - p representation, the
contributions being of the same sign, one overestimates the result by taking a single value
0.5E; for the energy denominator. It is of course possible, knowing the exact result, to
improve the approximation by changing the denominator, but the choice. a priori, of a
denominator twice as large or twice as small is rather arbitrary.

In conclusion, for the precise problem studied in this exercise, the best approximation
consists of making the calculation with the E - r Hamiltonian and retaining the first discrete
intermediate levels as seen in the table.

3. THE ELECTRIC DIPOLE HAMILTONIAN FOR AN ION COUPLED TO AN
EXTERNAL FIELD

The purpose of this exercise is to show that if a localized system of
charges coupled to an external field is not globally neutral, as in the case
of an ion, then new terms appear in the electric dipole Hamiltonian which
can be used to describe the system. These terms describe the coupling of
the global motion of the ion’s charge with the external field.

The various particles a with charge g,, and mass m, for an ion with
total charge

Q=73 4, (1)
are localized about the center of mass

R:%Zﬁlmara (2.2); M=3nm, (.b)

of the ion in a volume of dimension a. The ion interacts with an external
field described by the vector potential A,(r,, t). The long-wavelength
approximation (A > a) involves replacing A (r,, ?) by A (R,?) in the
ion’s Hamiltonian, which is then written
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1
2m,

H([) = Z [pa - qa( Ae(R9 t)]z + I/(‘oul . (3)

a) Consider the unitary transformation

i

T() = exp{ - hlz q,(r, — R) - AR, 1)} = exp[ p d- AR, t)-‘
)

where

d= Z qz(rz - R) (5)

is the electric dipole moment of the ion with respect to the center of mass.
Find T(¢)p, T (¢). One should take into account the dependence of R on
r, in T(¢), but neglect the spatial derivatives of A (R, t), which introduce
higher-order corrections in a/A.

b) Find the Hamiltonian H’(z) which describes the temporal evolution
in the new representation. What is the physical interpretation of the new
terms which appear, beyond those for the globally neutral system (Q = 0)?

Solution

a) Equations (4) and (5) generalize Equations (3) and (4) of Complement A, Rather
than being referred to a fixed point taken as the origin, the various charges g, are now
referred to the center of mass R. Since R appears in (4) for T(r), and since R depends
through (2.a) on r,, which does not commute with p,, Equation (2) of Complement A,y is
not applicable and must be replaced by

TWp, T )y =p, + T() T%V T

m

=p, + g, AR 1) — gq,, 7{ AJR. 1)

=p, + 4, AR 1) — % m, A(R. 7). (6)

We have used (1) and neglected the terms arising from V. A (R, 1), which are of higher order
in a/A.

b) The Hamiltonian which describes the temporal evolution in the new representation is
equal to

H'(t) = T(0) HO) TH(0) + m[dg’)] T (). ™

Equations (3) and (6) give

1 2
Ty HH T (1) = Zﬁ[p1 - %’”1 AR, ')-’ + Vieou

2

_9p. 0’
+ Veou VP AR 1) + > M

AZR. 1) (8)

2
_ Py
- ;2 m

£}
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where
P=30p, 9

is the total momentum of the system of charges. For the last term of (7), a calculation
analogous to that of Complement Ay, gives, using (5),

. T N
1h[dd(’r)‘| T (1) = Z gir, — R - AR 1= —d-E(R ). (10)
Finally by adding (8) and (10), one gets
2 Q QZ
' _ 2 _ R _ = . 2
H'(1) = };2’”1 + Ve — 4 ER D) = P ARD + AR D (1)

The last two terms of (11) are in addition to those of Equation (8) of Complement A . They
exist only for an ion and go to zero if Q = 0 (neutral atom). They depend only on the
variables R and P of the center of mass. They describe the interaction of a fictitious particle
of mass M, charge Q, position R, and momentum P with the external field A .

4. SCATTERING OF A PARTICLE BY A POTENTIAL
IN THE PRESENCE OF LASER RADIATION

A charged particle, scattered by a static potential V(r) and simultane-
ously interacting with laser radiation, can absorb (or emit in a stimulated
fashion) many laser photons in the course of the scattering process. The
purpose of this exercise is to show how the Henneberger transformation
allows one to calculate such processes simply in the lowest order in
V() ().

A particle with mass m and charge g interacts, on one hand, with a
static potential ¥'(r) localized about the origin, and on the other hand with
incident monochromatic radiation taken as an external field. This latter is
described by the vector potential A (r,?), the scalar potential U, (r, 1)
being zero. One neglects the interaction of the particle with the vacuum
field and considers only the interaction with the incident radiation, whose
wavelength is assumed long compared to the range of the static potential
V(r). The particle Hamiltonian is then written, within the long-wavelength
approximation,

1
H = 5-[p = gAL0.0] + Vin) (1
with
A0, 1) = A, coswi e, (2)

the incident radiation having amplitude A,, frequency , and polar-
ization e,.

(*) See Y. Gontier and N. K. Rahman, Letr. Nuovo Cim., 9, 537 (1974), and N. M. Kroll
and K. M. Watson, Phys. Rev. A4, 8,804 (1973).
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a) Carry out the unitary transformation

T(1) = exp[iF(1)/h] (3.a)
with
—— . LZ I ’ !
F(ry =p &0 +2m[ AX0, 1) dr (3.b)
E(1) = — ‘%) sin wr e, . (3.¢)

Let [yV(1)y and [y@(1)) = T(1)[D(2)) be the state vectors describing
respectively the state of the system in the original representation and in
the new one. Give the Hamiltonian H® describing the evolution of
[W2(1)). Show that H® can be written

2

(2) = ——p ” 4
H®)(r) >, VD 4)
and give the expression for V(r, r).

b) Interpret £(r) physically. Derive a “geometric” interpretation for
the transformation (3). What is the physical significance of the operator r
(multiplication by x, y, z) in the new representation?

¢) Expand the new potential F(r, t) in a Fourier time series of the form

+ x

V1) = Y, e "V (r). (5)

n= — o

Give 17,,(r) as an integral involving the spatial Fourier transform ¥ (k) of
V(r) and the Bessel function of order n, J,. Recall that

+ x
e~i15in(p — Z Jn(O() e~inzp (6)

d) We are interested here in the static part Vo(r) of the expansion (5)
for V(r, ). In addition, we limit ourselves to the Coulomb potential
V(r) = —q?/dme,r.

Using the Poisson equation, find the charge distribution which one can
associate with the potential ¥;(r). One can use the relationship

+x e if 1ol <lal
f Jolaw) e® dy = { Va~ — b (7)
- 0 if gy <|b].

What is the physical interpretation of the result?
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e) Consider the problem of the scattering of an electron by the
potential V(r) in the presence of the external field A (r, #). The electron
goes from an initial state with energy E, and momentum p, to a final state
with E, and p;.

By applying the results of first-order time-dependent perturbation
theory, show, starting with the expansion (5), that the possible final
energies E, associated with a given initial energy E; form a series of
discrete values labeled by an integer n. Interpret the result physically.

f) Calculate, to first order in V(r), the scattering amplitude associated
with a given transfer of energy and momentum. What happens to the
elastic scattering amplitudes (E,;= E;) and the inelastic amplitudes
(E, # E;) when A, — 0?

g) Starting with the preceding results, can you get, without calculation,
an expression for the differential scattering cross-section (do/d{2),_, , for
an inelastic process associated with one of the energies E, in the series
defined in part e)? Relate this cross-section to the effective differential
elastic cross-section (do /d2), associated with an electron scattered by the
potential V(r) in the absence of any external field. Do not try to calculate
(do/d&),.

Solution
) Since F(1) depends on r, the new Hamiltonian H'® is written

H® = T(t) HT* (1) + irz(aq; T(1)> T (). (8)

Since d F/dt commutes with F, the last term of (8) is equal to

dF_ L r ‘12 2
T p &) — ﬁAU(O- ) 9)

—that is, finally, from (3.¢) and (2), to

dF ¢
“El-vap A0, 1) — 3

2
4 Ax0.1). (10)
m
In addition, 7(¢) is a translation operator for r:
T T (1) =71 + &) (1

with the result that the first term of (8) is written, following (1), as
| )
TH)yHT (1) = 2—m[p — gAL0. 0] + V(r + &) (12)

Finally, the sum of (10) and (12) gives

H() = ,p—m O+ E0). (13)
The transformation T(7) is nothing but the Henneberger transformation studied in §B.4, the
last integral of (3.b) causing the term ¢°A%(0, 1) /2m to vanish in H® _ This term is actually
a ¢-number.
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b) As we have seen in §B.4, £(1) represents the vibrational motion of the particle in the
incident wave. In the new representation, the operator r represents the mean position of the
particle, about which it effects the vibrational motion described by &(¢). Under the influence
of the incident wave, the particle averages the static potential about the point r over an
interval characterized by £(r). It is this effect which is described by the last term of (13).

¢) Let ¥"(k) be the spatial Fourier transform of ¥(r):

Vir) = ‘.d"k 7 (k) e (14)

_
2 m*?
Replace r by r + £(t) in (14), and use (3.c) and (6). This gives

b(r + &) = Z,)_lﬁ [d"k f (k) e'*T exp(— imk - e, sin (z)l>

) ner
=Y e "V r) (15)
with '
V() = # [d‘k 1K) (k- &) ek (16)
where we have set
& = % 2 (7

As a result of its vibration at the frequency w in the potential ¥(r), the particle “sees” a
potential periodic in ¢ whose Fourier series expansion is given by (15).

d) If V(r) = —q*/4meyr, then ¥ (k) = — g%/ (2m)> ?eok>. so that from (16)
g 1

Vol = = 5

[d%kizjo(k -y et (18)

Let py(r) be the effective charge density which creates, for the particle with charge g. the
potential energy V,(r), and let py(k) be the Fourier transform of _po(r). Poisson’s equation
AV, /q) = —py/5, i written in reciprocal space as p, = g, k275 /q. where ¥,(K) is the
Fourier transform of (,(r) Since V) is given by (18), one concludes that

polk) = — (7;[[)_3‘2"]0“( &) (19.a)
and consequently
| . .
Po(r) = — g T [d’k er Jolk. &p) (19.b)

where §, = g4,/mw is the maximum amplitude of the vibration. It is sufficient then to use
(7) to get (*)

1
s T 0<l <
oo(r) = —q8(x) 8(y) x { m/8} - 2 | 20

0 if 0<§,<|z|.

(*y W.C.Henneberger, Phys. Rev. Lett., 21, 838 (1968).
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To interpret (20), we note that in its rest frame, the particle sees the charge - g creating the
potential ¥(r) oscillating at frequency w along the z-axis with amplitude §,. Equation (20)
gives the apparent static charge distribution associated with this oscillating charge —g. It is
clearly localized on the z-axis. In addition, the function of z given in (20) is just the classical
probability density for finding the charge —g at a point z on the z-axis, which clearly
diverges at the turning points —£, and £, since the velocity of the charge —g is zero at
these points.

e) From first-order time-dependent perturbation theory, the transition amplitude for
going from an initial state |@,), with energy E, to a final state |g;) with energy E, is
proportional to the~ Fourier transform of (g V(r,¢)|p,) evaluated at the frequency
(E; — E,)/h. Since V(r, t) is a sum of exponentials e~ '"*, the transition amplitude will only
be important for

E, = E, + nhw (21)

where n is an integer, positive, negative or zero. The case n >0 corresponds to the
absorption of # incident photons by the particle in the course of the scattering process, and
the case n < 0 to the stimulated emission of n photons (*).

f) The scattering amplitude {p, = kk,., E } — {p, = #k,. E,} with the absorption of n
incident photons is given by

| ~ +T 2
7 <o lVnle > [ gitfr ~ oo mmon gy (22)
-T2

where T is the duration of the collision. The integral over ¢ in (22) gives 2ah8'T (K, ~ E, —
nhw). As for the matrix element of ¥, (r), it is proportional to

1k, — k) [k, — k) - Gl (23)

As a result of the conservation of energy, k, and k, are connected by the relation

Rk} K
ﬁ = 1? m‘ +nhow. (24)

The elastic scattering amplitude ( E; = E,} corresponds to 1 = 0. Since J,(0) = 1. one gets, in
the limit £, — 0, the Born amplitude ¥ (k, — k,) with |k,| = |k,|. For n # 0, J,(®) =0
and the inelastic scattering amplitudes tend to zero with A, as Ajj. The presence of terms of
arbitrary order in 4, shows the nonperturbative character of such a calculation.

g) Let (do/d2), be the effective differential cross-section in the absence of the external
field. (do/d2), is proportional to |7 (k, — k,)|* and to the density of final states,
o(E; = E). In the presence of an external field and for the process where n photons are
absorbed in the course of the scattering, it is necessary to replace ¥"(k, — k,) by (23). On the
other hand, since E,# E _as a result of (24), the density of final states is different. Since
o( E) is proportional to VE for a particle of mass m, one has then

do o dO’ 5 B . E
(E>PI - (E (kj- — k,-))() J [(k, k,‘) ‘:0] \/E,- R (25)

(*) An experimental observation of this process is presented in A. Weingartshofer et al.,
Phys. Rev. Lett., 39, 269 (1977).
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5. THE EQUIVALENCE BETWEEN THE INTERACTION HAMILTONIANS A - P
AND Z - (VV) FOR THE CALCULATION OF TRANSITION AMPLITUDES

Consider a particle bound near the origin by a static potential V(r).
This particle interacts also with an external electromagnetic field described
by a vector potential whose value at the origin is

A0, 1) = A(1) e, cos wt (D)

where A(1) is a slowly varying function of time.
The Hamiltonian of this particle from the Henneberger point of view
(see §B.4) is, in the dipole approximation, equal to

H<2>:_‘1.2_+Vr+12(0 1) +i2—A2(0 1. (2)
I m mo 2m ’

Since A(t) is assumed slowly varying, one can take

70, t) ~ — ég—) e, sin wr!. (3)

In what follows, we will split H® into a particle Hamiltonian

pZ
Hy=-—+ V(r 4

and a Hamiltonian of interaction with the electromagnetic field: H; =
H® — H, The purpose of this exercise is to show that the transition
matrix element for one- or two-photon processes is, at resonance, the same
in this representation as in the usual one where the interaction Hamilto-
nianis A - p (%).

a) Find the expansion of H; to second order in q.

b) Using the commutator [ p,, H,), establish the equation

(b CV]czay = im, {b|p,la) (5)

relating the matrix elements of dV/dz to those of p,. The states |a) and
|by are two eigenstates of H, with eigenvalues E, and E,, and hw,, =
E, — E,. Show that in the case of a resonant one-photon transition, the
transition matrix elements are identical in the two representations.

¢) In the case of a two-photon transition, the transition amplitude is
proportional to the matrix element Q,, of an operator connecting the
initial level to the final level (see §B;y.2.a). In the A - p representation,

(*) W.C. Henneberger, Phys. Rev. Lett., 21. 838 (1968).
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this matrix element is written

2.(b | p.
le,=(ﬂ>z< lp:lroCrip.lay ©

m) 4 h(w — w,,)

Explain why this expression should be replaced by

2 b|dV/éz oV /cz 1 %
0t=~(55) P 2|5 >J ™

if the calculations are done in the Henneberger representation.
d) By using Equation (5) and the commutator [p,, dV/3z], show

directly that Q,, = Qf in the case of a two-photon resonant excitation
(as a hint, look to the proof in §B,y.2.c).

Solution

a) The expansion of V(x, y, z + (g9/m)Z.(0, 1)) to second order in g,

V(.\-, e %Z:(O, 1)> = V() + %Zz(o, 0 ‘a[;i') + ziﬂ Z2(0. z)'i—.';gﬂ + (8
gives for Hj
Hy = %Z:(O, /)th# + 2‘1:12 Z2(0, /)%ﬂ + 2‘—’;A2(0, 0. &)
b) One starts with the equality
TN (10)

-
and calculates the matrix elements of both sides of (10) between two eigenstates |a) and |b)
of Hy:
— i h|eViczlay = b )p,. Hyl)a) =(E, —E)<{blp.la>. (11)

By dividing both sides of this equality by —i#. one finds the required relationship (5).

In the usual description, the transition amplitude S,, is proportional to My, =
—q{p.)p./m [see (7.2) and (7.b), Complement By, ]. In the Henneberger representation, one
gets for the transition amplitude S, an expression identical to (7.a) of Complement By, but
the matrix element involved is, using (3) and ),

a > . (12)

M= - =4 <b
wm

Actually, of the three terms of (9), only the term linear in ¢ having a component oscillating

in € ~'“* can induce a one-photon transition. Equation (5) yields

cv

=

«Z

M=~ Loy (13)

® m
which is clearly equal to M, at resonance (wp, = w).

¢) In the new description, there are two contributions to the two-photon transition
amplitude. The first involves the first term of (9) (one-photon operator) in second order and
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corresponds to the successive absorption of two photons through the interme~diate states r of
the atom. This contribution may be gotten by replacing —(gq/m)p.[A(1)e iwt) /2 by
(q/m)(8V/8:)[A~(t)e’i“”]/2iw in Equation (9) of Complement Byy,. Using (15) of the same
complement thus leads to

2 “V.o- |y R VR
[Q,ﬁ]’:v(i> Z<b\(l//(-|i><r{(V,<-|a>. (19)

mey lw — o,

re
There is a second contribution to the transition amplitude, which is provided by the second
term of (9) (two-photon operator in first order) and which corresponds to a simultaneous

absorption of two photons. The contribution S, of this term is gotten through first-order
perturbation theory by retaining only the oscillatory component in e” ¢’ in Z%(0, 1) and

leads to
1 4 <
S” =5 T 3
b 0 2 m? b

~2

% Ay e N
z a>'(.dr( 210 )L (13

=T
a>, (16)

{
The last term of (9) does not contribute to the two-photon transition, since it is a ¢-number.
The sum of (14) and (16) is the same as Equation (7) and describes the two-photon transition
in the new representation.

d) Denote by D’ the difference

D’=l77 (l>zz<h]?Vﬂ€:ir></~}CV,F:|a>J_Z<h1p5|r><r[p:\u>. (17.2)

) Mo — o,,) o — w,,)

from which we get

‘«ZV

(] —— <h‘

5 =
2m? o (-2

The identity (5) allows one to write D’ in the form

A TR RIS ATSS

o’ o — o,)

(17.b)

-

Now, in the case of a resonant two-photon transition {see Equation (25) of Complement
Byl

Oy 0y — OF = — (0 — ). (18)
Substituting (18) in (17.b), one finds
, 1
D' = A—rz—;)—zZ((r) — o )blip lr>lriplay. (19)

Consider now the commutator

CV ctV
(,7:,‘ ] - - (20)
Z

Cz
and take the matrix elements of both sides of (20) between |b) and |a). We get

YbIpAry{ricviczlay = Chlcviczley {ripla)) = — kDI VIC2 fa)y .

P

(20
Equation (5) allows one to transform (21) into

20, = o) hlpiry{rlplay = REHIEV. 2 a) (22)

¥y
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which can again be written, since w,, = 2w — w,,.
22(0),.“ — ) {hIp lrylriplay =Rb| PV a)y. (23)
Comparison of (19) and (23) then gives
a > . (24)

1
D' = ={ b
2<')‘<

Consider finally @} — Q, . Taking (6) and (7) into account and the definition (17.a) for D',

we have
2
i = (4Y | p - L
b — Dpa = (m) [D 302 < b a >—l (25)

which from (24) is zero.

Thus, it is theoretically equivalent to calculate a two-photon transition with Equation
(15.b) or (18.b) of Complement B;y in the A - p and E - r descriptions or Equation (7) in the
Henneberger description, as long as one carries out the summations over af/ the intermediate
levels. It should be noted however that, as a result of the ratio —w,,w,,/w’ between the
contributions of each intermediate level r in the first term of (7) and (6), the summation on
the intermediate levels in the new description converges much more slowly that in the A - p
description, which itself, for two-photon absorption processes between two bound states, is
less well suited than the E - r description (see Exercise 2).

%

3

%
02

6. LINEAR RESPONSE AND SUSCEPTIBILITY. APPLICATION TO THE
CALCULATION OF THE RADIATION FROM A DIPOLE

Consider a system described by the Hamiltonian H,, and whose equi-
librium state is described by the density operator p., (which commutes
with H,). This system is subjected to a perturbation.

V(Y= — H(O) M (N

where A(¢) is a time-dependent parameter and M an observable of the
system. The purpose of this exercise is to find the linear response (*) of the
system to this perturbation as evidenced in the evolution of the mean
values of other observables, and to apply the results to the electromagnetic
field.

Let p(z) be the density operator describing the perturbed system at
time ¢,

a) Find the equation of motion of the density operator in the interac-
tion representation

pi(1) = exp(iH,t/h) p exp(—iH,t/h). (2)
as a function of the operator M in the interaction representation
M, (t) = exp(iHyt/h) M(t)exp(—iH,t/h). (3)

(*) See for example, P. Martin, in Many-Body Physics. Les Houches 1967, C. de Witt and
B. Balian, eds., Gordon and Breach, New York, 1968.
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b) Integrate the equation of motion for p, to first order in V by
assuming that the system is in the state Peq at 1= —o0. Show that the
mean value of an observable N at time ¢ in the perturbed state, to first
order in V, can be written

+ x

(ND ={(ND + J dr’ gumlt — 1) (1) 4)

- X

where (N, o 1s the equilibrium mean value of N in the unperturbed state
peq and where x y,, can be written as the mean value of an operator in p,,.
Give the expression for x y(z — t').

¢) The Hamiltonian of a quantized field coupled to a classical source
formed by a classical electric dipole d(¢) localized near the origin in a
region of extent a can be written (see Complement A |, §3.b)

H=H, — gid(z) - D'(0) (5)
0

where Hp =X hw(a;a;+ 3) is the radiation Hamiltonian and where
D’(0) is the displacement at the origin. Recall that

D _

. Z 16, (¢; a; elr — g a’ e ™) (6)
0

coincides with the total electric field outside the system of charges.

By using the results of the foregoing question and the commutators
from Complement Cy, find the mean value of the total electric field
radiated by the dipole at a point r such that r > a. Give the field as a
function of the dipole components, their velocity, and their acceleration.
Show that the field radiated in the far zone is proportional to the
acceleration of the dipole.

d) Apply these results to the case where the dipole is oscillating.
d(1) = qajcoswgy 1. (7N

and compare the resuit with that of Exercise 6, Chapter L.

Solution

a) Take the derivative of Equation (2) with respect to time:

d i i . H d CH
ap,(r) =3 Hy p 1) — % pityHy + exp(xTO l)[d—[ p(r).lcxp(— ITO r). (8)

The rate of variation of p(¢) is given by the equation of evolution of the density matrix under
the action of the perturbed Hamiltonian Hy + V{(1),

iﬁ%p(t) = [Hy. p)Y] + [V p(D] . 9)
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This gives for the last term of (8)

H, d H, i CH, CH, \
CXp(lTO r) [a p(l)} Cxp(— 1—/191) = — % {HO. exp(lTOr) p(t)exp(— l—ﬁ9 t>‘ +
i . H CH
+ (7 %)exp(l—f!) V(). p(6)] exp(— 1%1)

= = 3 [Hoop0] = 5 [ 0 M0 pi(0] - (10)

and consequently

d

3P0 = 5 40 [M 0 ()] (1)

The initial condition is given by p{1) = p,, for t —» —o0. Since p,, commutes with H,, one
gets
pl— X)) = pg- (12)

.

b) If A(¢) remains identically zero, dp,/d1 is also zero, and
D) = py(= X) = pey.- (13)

To first order in A, one can replace p, (1) by p,, in Equation (11). which is then written

d 1A(1)
3 =5 [M (1), pey] (14)
and integrated to give
i o ,
Prt) = Pog = 7 [ dr’ i) [M(£). peg] - (15)

We return to p(¢) by using (2) and the fact that p,, commutes with H:

1) = peg + % ‘[7 dr’ 21" lrexp{i%(z’ — 1) } M exp{ - i%‘l(r’ - 1)}.;@] (16)

One can extend the integral on ¢’ to + oo by multiplying the term to be integrated by the
Heaviside function #(¢ — ¢'), which is zero for ¢’ > +. The mean of the observable N at time ¢
is then found:

(NS, =Tr(p(r) N) = Tr(p,N) + ! [ dr 0t — 1y )Y Tr [ N[M (1 = 1) pe] )

h o
={(N)y + [‘ dt A gt — 1) (17)
where T
i
Zvar(T) = 5 Tr { NM(— 1) py — Npg Mi(— 1)} 0(x). (18)

Using trace invariance under circular permutation of the operators in the second term, we
get
i

Ivn(T) = 7

Tr { NMy{— t) poy — My(— ) Np, | 0(v)

i
eq |

= 5 CIN M= 1) 00). (19
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We note that M,(—) is nothing more than the observable M having evolved in the
Heisenberg picture from 0 to —7 under the action of H, (free evolution). Thus, x v, is the
mean in state p,, of a commutator involving unperturbed operators taken at two different
times (N at time 0, M at time —r). Equation (17) shows that x,,, defines the linear
response of the system in state p,, to a weak perturbation. It is thus a linear susceptibility.

¢) We now look for the linear response of the field to the perturbation caused by its
coupling to the classical dipole d(r). This is measured through the components of the total
electric field E'(r) at point r situated well apart from the region of dimension « about the
origin where the charges forming the dipole are located. It has been shown in Complement

Ay that one then has
Em - 20 (20)

&

where D’ is the displacement given by (6). One can then apply the theory of linear response
in part b) by taking

D,(r)

N=E(r)=—"— (n=12x107) (21.a)

&g
A M =d(r) Z d (r) © (m = x.p 1) (21.b)
;cq=|0><0|' (21.¢)

Note first of all that, according to (6), the mean of D'(r) in the vacuum is zero. The second
term of (17) then remains, which is given here by

x

B = [0S a0 @Y moae-o @

_— -

where 1 = ¢ — t’ and

Dyr.0) D0, — 1)
FumlT) = ,{ l[ o {70”0>0m. (23)

Equation (6) shows that the mathematical expression for D’ /g, is, in the new representation.
identical to that of E, in the Coulomb gauge. The radiation Hamiltonian, g, is also the
same in both cases. As a result, the value of the commutator in (23) is identical to that for
the commutator of the components of E | found in Complement Cy;; (Equation 22), where
one puts rp=r1=0r=0and 1, = —7. We get in this way

o (2) = ()(r) ilic {(3 /’,, m 5 )({5'(1' — 1) - ¥ + ety O = ¢T) —;(5(/‘ + cr))
£

r r

B (!Lr;_ﬂ B (5"’") ((5”(;' — 1) 7 3"(r + (‘T)) } 24)

The functions having r + ¢7 as an argument do not contribute, since B(7) gives 0 for
T= —r/c

Substituting (24) in (22) and using the properties of the 8-function and its derivatives,

[c dtdr — en)d,(r — 1) = dm(t - £> (25.a)
. ¢

¢

[(' dro'(r — ctyd,(t — 1) = — %c.lm(t — L) (25.b)

P

(( dr d"(r — ey d(r — 1) = —de( :) (25.¢)
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we obtain

CEn 3, = (3’—’ -

4 me, I

P
| @o

At large distance only the term in 1/r remains, which describes the radiation field. It is
proportional to the dipole’s acceleration or rather to the part of it that is orthogonal to the
radius vector r.

d) Applying (26) to the case where the dipole is given by (7), one gets, setting A, = w,/c.

) 1 3r(a, - 1) cos (gt —hkgr)  hysin(mgt — kg r)
CEWr) ), = 4 ne |: ’g - aO:H: 0',3 e 2 :).2 ° -
it}
g |ra, -1 a | K2 Eo8 (gt — kyr)
— 4 ng(} _—2—’. 0 0 ]_—.

One then again gets the results from Exercise 6 of Chapter I [Equation (14)]: the mean of the
quantized field is identical to the classical field.

7. NONRESONANT SCATTERING. DIRECT VERIFICATION OF THE EQUALITY
OF THE TRANSITION AMPLITUDES CALCULATED FROM THE HAMILTONIANS
A-PANDE:-R

Consider an electron bound near the origin by a static potential V(r).
This electron can pass from a state |a) with energy E, to a state |a”) with
energy E, in a scattering process in the course of which an incident
photon with wave vector k and polarization ¢ is absorbed and a photon
k’,¢’ is emitted in a different mode (k # k’). Denote by |¢,) = |a,ke) and
|¢,> = |a’,K’¢’) the initial and final states of the global system with
energies E; = E, + hw and E, = E, + hw'; there are no photons in the
other modes, and |ke) = a.(k)|0), |0) being the vacuum state. Assume
that the scattering process is nonresonant, that is to say, there is no
discrete atomic level |b) whose energy E, is equal to E,. The purpose of
this exercise is to show that the transition amplitude to second order in the
electric charge ¢,

L(’)fi:<(Pf|Hf!(P,'> + lim Z<(PJ'IH1|(P,'><(P,'.|H1|(P£>
e=0. Ei*Ej—f-lS

(D

has the same value in the A - p and E - r representations, on the energy
shell, that is, when E, = E/ (*). The energies E,, Ef, and E/. are those of

(*) See also Dirac (§64).
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the global system atom + radiation. In the long-wavelength approxima-
tion, the interaction Hamiltonians are respectively

2
Hy= = dp A0 +5-A%0) (2.2)
Hy=—yqr E| 0) (2.b)

the quantized fields at R = 0 being

A(0) = Jd3k Z% [ak) + a (k)] e 2.0)
E, (0) = ( kY 6, [ak) — a] (k)] € 2.d)

where &, = [hw/2¢e,27)* /%

a) Find &/, in the E - r representation to second order in the electric
charge ¢. Show that the result is of the form

{(r * 8,)‘1«,,(1' * S)Im (l' : 8)a’h(r : Sl)bu}

Ao — wy,) o' + wg,)

Gi=CY 3)

b
where C is a constant to be found, and where the sum is over the
electronic levels |b).

b) Find T, to the same order in the electric charge, using the interac-
tion Hamiltonian H, given in (2.a). Denote by G,(2) the contribution of
the quadratic term of H;, and by (1) the contribution of the linear term
to second order.

¢) Let D be

(e 8),(r 8 (1 8),(r s)bu>. @

W — Wy, W + oy,

D =Y (0, 0y, + U)(x)’)(
b

Show that when E,, + hw’ = E, + hw, D is equal to

D = ﬁ €€ 611’11
m

(5)
One can, to begin with, prove that w,,w,, + ww = (@ — wy, (& + w,,).

d) Show that the values of G, gotten in a) and b) are equal on the
energy shell.

Solution

a) From the E - r point of view, the interaction Hamiltonian (2.b) is linear in ¢ and «~
and cannot directly couple |g,) and |, ). The transition between these states is exclusively
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via an intermediate state [second term of (1)]. This state |g,) can have no photon (|b,0)) or
two photons (| b, ke, k'e’)). In the first case, one has absorption of the photon ke followed by
emission of the photon k'¢’, the energy E, of the intermediate state being E,. In the second
case, the emission of the photon K¢’ precedes the absorption of the photon ke, and the
energy E, of the intermediate state is E, + ho + ho'.

We now calculate (b,0|Hf|a,ke). By using (2.b) and (2.d), we obtain

(hO|Hj|lake) = ~ ¢ [d‘*k” Z &, (0la k)i ke (- e, 6)

Since |ke) = a; (k)|0), by using the commutator
[a,(k"). a} (k)] = .- ok — k") (7
we get

(hOVH {ake) = — ¢(r - 8),,16, . (8)

A similar calculation gives

(ad Ke|H|b0)=—¢g [d*‘k” Y(— 18,0k € al k)| 0y(r &),
= y(r - &), 16, . %)
The matrix elements

(b, ke, k'¢’'|Hj|a,ke) and (a' K& |Hjib ke k'e)

are found in an identical fashion, which gives finally for G,

CE) (8, (X E)(F - Y,
i = 4" 60 b Z’V T — w,,) o' + wy) | (10
This equation is the same as Equation (3) if one takes
2
h .
C=L[2£ (‘,’,zq—%\'(/)(’)'- (]1)

@ 28,2 1)

We have assumed that no denominator in (10) can vanish, which allows us to take ¢ = 0 in
Equation (1).

b) In contrast to the above, it is now possible to directly couple |p,) and |g, ) using the
quadratic term in ¢ in H,. One first finds this initial contribution to Gy,, called ©;{2)- Since
q*A%(B)/2m does not act on the particles, it is clear that 0, (2) is proportional to §, . To
find the malrix element, it is sufficient to retain in A*(0), expanded with the aid of (2.c), the

products a/.(k{")a4(k3) and a(k)al (k7). After an integration over k' and ki, we get
using (7)
4,8, .
Y S EDRP (12)
m oo’

The second term &), (1) requires a sum on the intermediate states |, ). This second term is
found like @), in «) by replacing —gr - E with —¢p - A/m. Using (2.c) for A(0). one finds

6 1) = & ol v Pp P Dy (B E) P

me o g Mo — o) "y + w,,) a3
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Equation (B.43), relating the matrix elements of p & to those of r- e, allows one to
transform (13) into

Gl =y 26,6, Z( Oyp "’hujli(l' CE) bt 8y, (1 E) (e 8/)h1:1 (14)

0w’ (o — ) e’ + oy,)

¢) To show
Oy W T 00" = (0~ )0+ 0)y,) (15)
note that when E,. = E, + h(w — «’), one can replace w,, by
Ogp = 0 — 0 = oy, (16)

in the first term of (15) and equate the two sides of (15). Equation (15) then allows us to
rewrite (4) in the form

D= Y [0 + @) (£ &), (0 - &)y — (0 — 0 )1 - &) (r - 2y, ] (17)
b

Now, on the energy shell, w — w,, = 0w’ + w
brackets with this equality, we find

b=wo Z (r - &), = )y, — (0 8),(r - &), ] —

By transforming the second term in the

w'h

f—Z[ VublP " Doy — (P * EV(r = €)1 (18)

m
after having again used (B.43) to write the second sum on | ). Using the closure relation this
then becomes

D=c' Callr e)ir-ollad— é<a’\[(r cepeolla>. (19

The first commutator is zero, and the second is a c-number equal to ike - ¢ which proves
Equation (5).

d) Using (4), (10), (12), and (14), one can write

b 8

o 0

£, (20)

W

6. -6, =
1 I hooy' o'

The equality (5) then gives
U, =G, . 2n

The transition matrix on the energy shell is thus the same in the A-p and E - r
representations. Note that the proof of this equality assumes nothing about the values of w
and «’, with the exception of the long-wavelength approximation and the absence of
resonant atomic levels. The preceding result can then be applied to various problems such as
Rayleigh scattering, Thomson scattering, or Raman scattering.






CHAPTER V

Introduction to the Covariant Formulation
of Quantum Electrodynamics

The purpose of this last chapter is to give the reader a first view of
relativistic quantum electrodynamics and to introduce the necessary back-
ground for the study of more advanced books in this field.

Thus far, by choosing the Coulomb gauge, we have deliberately re-
nounced the use of manifestly covariant equations for the electromagnetic
field. We have also treated the particles nonrelativistically. Such an
approach is sufficient for low-energy physics and simplifies the theoretical
formalism as much as possible.

We now return to these two limitations and try to give some idea about
other more elaborate approaches which are essential at high energy (when
the particles have a high velocity or the incident photons have a frequency
large compared to mc*/h) or for the study of radiative corrections
(virtual emissions and reabsorptions of high-frequency photons, covariant
introduction of renormalized charges and masses). This chapter essentially
treats the covariant formulation of classical and quantum electrodynamics
in the Lorentz gauge. For simplification, our treatment will be limited
either to the free field in the absence of sources, or to the field interacting
with external sources whose motions are given a priori. The relativistic
description of the particles and of their coupling to the field is a much
broader and more complex problem. The particles must then be consid-
ered as the elementary excitations of a relativistic quantized matter field
coupled to the photon field. We will give in Complement A an elemen-
tary introduction to the theory of coupled Dirac and Maxwell fields in the
Lorentz gauge. We will also show in Complement By, how, starting with a
completely relativistic theory, it is possible to justify the nonrelativistic,
Coulomb-gauge Hamiltonians used in the rest of this book.

Recall first of all the procedures followed in Chapter II to quantize
electrodynamics. Starting from the standard Lagrangian which leads to
the Maxwell-Lorentz equations, we eliminated all the redundant degrees
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of freedom of the potentials to transform this Lagrangian into an equiva-
lent one where only the essential dynamical variables, each having a
conjugate momentum, appear. The canonical quantization of the theory is
then straightforward.

If it has the advantage of simplicity, such a procedure also has the
disadvantage of not retaining the manifest covariance of the field. Al-
though it does not alter the fundamental relativistic nature of the field. the
elimination of the scalar potential has broken the symmetry between
the four components of the potential four-vector. In the same way, the
dynamical variables of the vector potential in the Coulomb gauge, that is,
the transverse components 7, (k) and (k) in reciprocal space, do not
transform simply under Lorentz transformations. Now there are problems
in quantum electrodynamics, such as renormalization and the elimination
of divergent quantities, for which it is essential to deal only with mani-
festly covariant equations.

Here we are going to treat the vector potential A and the scalar
potential U symmetrically. The simple approach in Chapter II must thus
be abandoned. Indeed, the symmetry which we desire to preserve between
A and U prohibits us from eliminating the redundant degrees of freedom
of the potentials in the Lagrangian itself, as in Chapter II. We are now
obliged to consider A and U as independent dynamical variables in the
Lagrangian, each with a conjugate momentum. As a result, after canonical
quantization, there are four kinds of photons associated with the four
components of the potential four-vector. The problem of the redundancy
of the potentials, which we have ignored in the Lagrangian, necessarily
arises later. We will indeed see that the solutions of the equations of
motion no longer coincide in general with the solutions of the Maxwell
equations. It is then necessary to introduce, in addition to the Lagrangian,
a subsidiary condition allowing one to select from all the possible solutions
those that have a physical meaning. One of the essential purposes of this
chapter is precisely to discuss the problems brought up by the realization
of such a project in quantum theory and to give an idea of the way in
which these problems can be resolved by constructing a state space for the
radiation with four kinds of independent photons and then characterizing
a subspace of physical states by means of the subsidiary condition.

We begin (Part A) by introducing a new, manifestly covariant La-
grangian for the classical fields, differing from the standard Lagrangian in
the sense that it contains U, so that U has a conjugate momentum. This
Lagrangian leads to equations of motion which agree with Maxwell’s
equations only if a subsidiary condition— that is, the Lorentz condition—is
imposed on the potentials. Starting with this Lagrangian, we then calcu-
late the momenta conjugate with the potentials, the Hamiltonian, and the
classical normal variables of the field, that is, the variables evolving
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independently of one another in the absence of sources. The canonical
quantization of this theory is done in Part B, the normal variables
becoming the creation and annihilation operators for transverse, longitu-
dinal, and scalar photons. We establish manifestly covariant expressions
for the commutators of the free potentials, and we analyze the difficulties
arising in quantum theory and due to the Lorentz condition. We then
study (Part C) a possible solution to these difficulties, involving the
introduction of an indefinite metric in Hilbert radiation space. The preced-
ing ideas are finally illustrated by a simple example, the effect on the field
of its interaction with two fixed charges. This leads to a new derivation of
the Coulomb interaction and its interpretation as resulting from an
exchange of photons between the two charges (Part D).
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A—CLASSICAL ELECTRODYNAMICS
IN THE LORENTZ GAUGE

1. Lagrangian Formalism

a) COVARIANT NOTATION. ORDINARY NOTATION

Before beginning we give the notation to be used for the potentials.

The covariant notation A* for the potential four-vector uses a Greek
index p which can take on four values: 1,2,3 for the spatial components
and O for the time component. It is desirable then to distinguish the
contravariant components A* with superscript index from the covariant
components A, with subscript index, related by

=Yg, A4 (A.1)

where g, is the diagonal metric tensor (g, = +1, g,, = = 8»n =gy =—1).
The ordinary notation for the vector potential, A, uses a Latin index
which can take on the values x, y, z. For the scalar potentlal U we also

use the notation
A =

s

U
— (A.2)
¢
s0 as to have a potential with the same dimension as the vector potential.
The upper or lower position of the indices j and s has no importance in
A4, and 4,.

Fmally we give the equations relating the different components which
have just been introduced:

A% = Ay = A, = Ule

Al = — 4, = A,
A'= — 4, = 4,
A= — A, = 4,. (A.3)

b) SELECTION OF A NEW LAGRANGIAN FOR THE FIELD

In the standard Lagrangian [(B.5) of Chapter II], the scalar potential U
does not have a conjugate momentum, since 9.%/dU is identically zero. If
we want to treat U(r) and 4 ,(r) symmetrically, it is necessary to modify
the standard Lagrangian so that U(r) has a conjugate momentum. For this
property to be true a priori for the free field, the radiation Lagrangian
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density %, has to be modified. We must impose two conditions on Zy:
(i) &, must be manifestly covariant
(i) £, must contain U.

We consider then the following Lagrangian density:

80 ('2 ’
L= — Y (2,47 ("4,) . (A.4)

2

which is also written in the usual notation as

@ _ o A2 U ? 2 242 2
v = IR izj(ciAj) +(YU)* . (A.5)

Equation (A.4) is clearly covariant, and U has a conjugate momentum,
since U appears explicitly in (A.5).

We analyze now several properties of %,. Note first of all that £,
involves only quadratic functions of A,. This insures that the Lagrange
equations derived from (A.4) or (A.5) are linear with respect to the
potentials. In addition, £ involves only the first-order derivatives of the
potentials, which is not surprising, since only the time derivatives of first
order are permitted in the Lagrangian formalism and the covariance
imposes the same condition for spatial derivatives. Note finally, and this is
an important point, that the new Lagrangian is not equivalent to the
standard Lagrangian, whose free-field density #3' is written [see Equa-
tion (B.26), Chapter II]

2
: & ¢ .
L= — 04 ‘;FMF“‘ (A.6)
where
F,=2,4, - 04, (A.7)

is the electromagnetic field tensor. We show in Part C below that the
Lagrange equations associated with (A.4) differ in general from those
derived from (A.6), which, as shown in Chapter II, are the Maxwell
equations. One thus gets the Maxwell equations again only if a subsidiary
condition is imposed on the potentials.

Heretofore, we have only considered the free field. To describe the
interaction between the field and the particles, we retain the same density
&, as that in the standard Lagrangian [see (B.4.e) of Chapter 11,

ﬁ‘/’,:j'A*pUz—ZjuA“ (A.8)
u

where j, is the current four-vector (cp. j). In what follows in this chapter,
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we will be interested principally in the fields (the equation of motion of
the fields, the commutation relations of the fields, etc.), and we will use
only the Lagrangian densities .#; and .%,.

Remarks

(1) In relativistic quantum electrodynamics, the particles themselves are de-
scribed by a relativistic field—the Dirac field, if the particles are electrons and
positrons. The Lagrangian of the particles, L,, is the Lagrangian of the free
Dirac field, and the current j (x) is equal to qcmﬁ(x)yump(x), where the y, are
the Dirac matrices, and ¢ and 4 the Dirac field and its relativistic adjoint.
After quantization, the Dirac field becomes a quantized field whose elementary
excitations describe the electrons and positrons (see Complement A, ).

(ii) In the covariant formulations of quantum electrodynamics, one frequently
uses another Lagrangian density for the field, called the Fermi Lagrangian,

2
s welpbn ez wo
uy u _

which differs from %, but is equivalent to it. An elementary calculation shows
that (A.4) and (A.9) differ by a four-divergence

2
&g C

Ly — CF =

Y A A0 A — A0, AM (A.10)
uv

The first term of (A.9) is the standard Lagrangian density #3'. Thus, to go from
ZR' to F{, it is necessary to add a term proportional to (T, 9, 4*)?, which is
not a four-divergence. The densities ;' and %{, and as a result %' and
£, are thus not equivalent.

¢) LAGRANGE EQUATIONS FOR THE FIELD

Since the new Lagrangian density = .%, +.%, is not equivalent to
L' + &, there is no reason that the new Lagrange equations for the field
should coincide with the Maxwell equations [(A.11.a, b) of Chapter I]. The
latter can be put in the form

DA 5i— VA (A.11.2)

Qv

[
|
-
_+_
|
>

(A.11.b)
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where O is the d’Alembertian and where

—27+V-A. (A.11.¢)

The form (A.11) for the Maxwell equations makes it easier to compare
them with the new Lagrange equations.
The new Lagrange density is the sum of (A.5) and (A.8),

g | - 7\2
¥ = TO{AZ - (g) — 2y (A) + (VU)Z} —-pU+j-A. (A 12
ij
Consider first the Lagrange equation relative to the components A,(r)
of the vector potential. 4, and the space derivatives of A, arise only in the
Lagrangian density of the field (A.5), whereas A4, arises only in the
interaction term. It follows that

CLICA, = & A, (A.13.2)
2LIC; A) = — &y 2O A (A.13.b)
PLICA, = ;. (A.13.c)

By applying the Lagrange equations relative to a system having a coniinu-
ous infinity of degrees of freedom [Equation (A.39) of Chapter II], we then
find

. %A,
80|:Ai -y < 2'] = j, (A.14)
i CX;
that is,
A =—l—2j. (A.15.a)
£,C

An analogous calculation gives for the Lagrange equation relative to the
scalar potential

[]Uzip. (A.15.b)
o

The equations (A.15.a,b) differ from the Maxwell equations (A.11.a, b).

Remark

We have considered here the Lagrange equations for the fields. If one takes for
the particle Lagrangian the Lagrangian of the Dirac field ¢ (x), and if one takes
as the current j, = qc@y#tp (see Remark i of §A.1.5), the Lagrange equation
relative to ¢ is just the Dirac equation in the presence of the potential A4 . (see
exercises 5 and 6).
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d) THE SUBSIDIARY CONDITION

There is actually a choice of potentials for which Equations (A.11) and
(A.15) agree. It suffices to set

A=V-A+%U=o (A.16.2)
.

that is, to use the Lorentz gauge. The condition (A.16.a) is also written in
covariant notation as

;@Aﬂ=0. (A.16.b)

The two approaches (siandard Lagrangian, new Lagrangian) then lead to
the same result if the Lorentz condition (A.16) is imposed as a subsidiary
condition.

We will now verify that (A.16) is compatible with the equations of
motion (A.15). A combination of (A.15.a) and (A.15.b) leads to the
following equation of evolution for A:

! .
OA = 2(V-;+%€>=0 (A.17)

& ¢

as a result of conservation of charge. Thus, if initially A = A = 0, then A
remains identically zero at all times. Now it is always possible at the initial
instant to impose the condition A = 0 between the generalized coordi-
nates A, U and the generalized velocities A, U. As for A, one can find its
value at the initial time by using the equation of motion (A.15.b) to
reexpress U as a function of AU and p. One gets

A=V -A+VU)+2=_Vv.E+ 2 (A.18)
o o

which is also zero if the initial conditions are such that E obeys the
equation V - E = p/gg. One can then take A = A = 0 at the initial time
and have subsequently, from (A.17), A = 0 at all times.

Note finally that the condition (A.16) still allows certain gauge changes:

Au—>A;=Au—F~uf. (A.19)
It suffices that
c,tf=0f=0 (A.20)

in which case 4, s also a potential satisfying the Lorentz condition.
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e) THE LAGRANGIAN DENSITY IN RECIPROCAL SPACE

To conclude this part, we will write the Lagrangian density £, of the
field when the dynamical variables are expanded in reciprocal space:

Ly = Jd% e = J[d3k Pr. (A.21)

Recall that the k integral in (A.21) is only over a half space, as in §B.1.b
of Chapter II. By using the Parseval-Plancherel relation to transform the r
integral of (A.5) and by using A, and its Fourier transform &, in place
of U and % [see (A.2)], one gets

Do = ol * o — 0P k¥ oA — Aol + 0 Ad* ] (A2

with w = ck. The Lagrangian density (A.22) describes four independent
harmonic oscillators associated respectively with the three spatial compo-
nents and the time component of the four-potential. For &/, the sign
differs from the usual sign, which, as we shall see, has important conse-
quences for the quantization.

2. Hamiltonian Formalism

a) CONJUGATE MOMENTA OF THE POTENTIALS
Let 7T; and 7  be the conjugate momenta of .«/, and .7,. By using the
definition (A.54) of Chapter II for the conjugate momenta and (A.22), one
gets (with j = x, y, z)
;= O(R/E,c’];* = gy A, (A.23.a)

T

Il
~
AN
=
~
],
*
It
|
o
=}
AN

o, (A.23.b)

S

which gives in real space

M=¢yd (A.24.2)

M, = — ¢ A,. (A.24.b)
Equations (A.23) and (A.24) remain valid in the presence of interaction
with particles, since the interaction Lagrangian does not involve y/ and
&7, and therefore does not contribute to 7; and TT,.

T

It is useful for what follows to rewrite the Lorentz subsidiary condition
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(A.16.a) in reciprocal space by using (A.23.b) to reexpress % = .7, /c as a
function of 7T:

ik o/ = 1
&g ¢

(A.25)

5 -

b) THE HAMILTONIAN OF THE FIELD

The Hamiltonian Hy of the field alone can be gotten from .#,. Then
Hy is given by the integral over a reciprocal half space of the Hamiltonian
density #, equal to [see Equation (A.59), Chapter 11]

Hy=[T-d* + U of + T, A+ T 4] — Py (A.26)

that is, also from (A.23),

- 1
Hyp = SOL_Z T* T+ oA o —iz mF W, — U)ZQQ/S*.Q/SJ.
2 2 s

(A.27)

We identify in (A.27) four harmonic-oscillator Hamiltonians, three with
the + sign for the three components of the vector potential (.«7;, T ) and
one with the — sign for the scalar potential (.., 7). This negative sign
seems to pose a problem, since the energy of the radiation can apparently
become negative. We will see later that the subsidiary condition (A.25)
prevents that from happening.

Remarks

(i) The Lagrangian of the field, Lg, is invariant under spatial translation. A
treatment analogous to that of Complement B;; (§4) allows one to find the
constant of the motion associated with this invariance of Lg, which is just the
global momentum Py of the radiation (see also Exercise 5 of Chapter II). Py is
given by

P, = —1 fd“*k K(TT* « o + ¥ od, — T - o/ * — T dF*). (A.28)
(ii) Since we have not explicitly given the expression for the Lagrangian L, of
the particles, it is impossible here to find the total Hamiltonian H. If, in
contrast, the sources have an externally imposed motion, L, no longer appears

in the Lagrangian, which reduces to L; + L,. One then finds for the Hamilto-
nian H of the field coupled to such external sources

H=Hy— L, = Hy + ¥d3k(}'j‘“ At o A (A.29)

where the currents ;,, are given functions of k and «.
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¢) HAMILTON-JACOBI EQUATIONS FOR THE FREE FIELD

Application of Equations (A.60) of Chapter II to the Hamiltonian
density (A.27) gives the equations of evolution of »/; and 77,

o= OHETS = — T, (A.30.2)

T, = — dAHpfosd = — gg 0% (A.30.b)

o, = (HgfeT* = — — T, (A.31.2)

T, = — OAHglosd* = &g w? oA, . (A.31.b)

Equations (A.30.a) and (A.31.a) have already been seen in (A.23.a) and
(A.23.b). It is important to note the sign difference between the right-hand
sides of (A.30) and (A.31), due to the sign difference between the first and

last terms of (A.27).
Remark

In the presence of external sources, it is necessary to use (A.29). Equations
(A.30.a) and (A.31.a) remain unchanged. It is necessary to add j,, to the right
side of (A.30.b), and —4,, = —cp, to the right side of (A.31L.b), which gives

T, = — eq0? o, + (A.30.b)
T, = ¢ 02 o, — cp,. (A.31.b)

3. Normal Variables of the Classical Field

a) DEFINITION

The normal variables of the classical field are linear combinations of
the dynamical field variables and their conjugate momenta which have the
property of evolving independently of one another in the absence of
sources, i.e., for the free field. Thus if one takes

o = /” [wsz/ * e n,] (A.32)

it follows from (A.30.a) and (A.30.b) that

% + iwa; = 0. (A.33)
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In the absence of sources, the normal variable «,(k, 1) is only coupled
with itself and evolves as e '“. Note that the definition (A.32) agrees with
that used in Chapters I and II [see (C.46) of Chapter II].

On the other hand, because of the sign difference between the right-hand
sides of (A.30) and (A.31), it is necessary to take

N PRV A.34
oy = m(ﬂts“gns (A.34)

to have for a, an equation analogous to (A.33),
a, + iwa, = 0. (A.35)

If one took the + sign on the right in (A.34) as in (A.32), a, would evolve
as e and not as e “*,
The solutions of (A.33) and (A.35) are written

ok, 1) = o (k) e " (A.36.2)
ok, 1) = a(k)e (A.36.b)

Remark

Equations (A.32) and (A.34) continue to define a, and a, in the presence of
interaction. But the equations of motion (A.33) and (A.35) then contain source
terms. For example, with external sources, (A.33) and (A.35) must be replaced
by [see (A.30.b") and (A.31.b")]

%+ i ' (A.33)

A 1wy, = ———— o ek

! L2k o
o iwr, = e ep,. (A.35)
V' 2 8 hw

b) EXPANSION OF THE POTENTIAL IN NORMAL VARIABLES

Recall first that the potentials A, and A, are real, which implies

(k) = ¥~ k) (A.37.a)
(k) = o/*(— k) (A.37.Db)
and analogous equations for 7T; and TT..

We then replace k by —k in (A.32) and (A.34) and take the complex
conjugate. Using (A.37) and taking o} = a*(~k, t), a} = af(—k. 1), we
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&g i
o = \/;)[wdg — g nj] (A.38.a)
wr = 2 oy + L (A.38.b
o 2hiw| gt -38.9)

Starting with (A.32), (A.34), (A.38.a), and (A.38.b), we then derive the
Fourier components of the potentials as functions of the normal variables:

get

ik 1) = \/;—h— Lok, 1) + a¥(— Kk, 1)] (A.39.a)

gy @

A0 = |5 f — [k, ) + 2=k 0], (A.39.b)
0

Finally, we substitute (A.39) in the Fourier integrals defining A (r, t) and
A (r, t) and change k to —k in the integrals of the second term in (A.39).
We get the equations

h . .
Afr 1) = J &’k %[%(k 1) et 4 ok, 1) ek

(A.40.2)

i A |
e = Jo ﬁ—w@T [k €™ o+ otk e~ *]
(A.40.b)

which give the expansion of the potentials in normal variables. In the
special case of the free field, it is possible to use Equations (A.36) and to
get

/] ) )
A. 1) = d3k | i(k.r — ot) * —i(k.r — wi)
fr 0 J T r O ) (k) e + afk)e 1

(A .40.¢)
/ h . .
A ] 1 = d}k i(k.r — o) * —i(k.r —wt)
s(r ) Jv 2 80 (1)(2 7'[)3 [as(k) € + O(s (k) ¢ ] N
(A.40.d)

Equations (A.40.c) and (A.40.d) give the expansions of the free vector and
scalar potentials in traveling plane waves.
Since the vector and scalar potentials are considered as independent
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dynamical variables in the new Lagrangian, there are at each point k of
reciprocal space four independent degrees of freedom, described by the
three Cartesian components a,(k) of a(k) and by a (k). Rather than
project a(k) on a fixed Cartesian basis in reciprocal space, one can project
a(k) on the two unit transverse vectors ¢ and ¢, perpendicular to k and to
one another (see Figure 1 of Chapter 1), and on the unit vector k = k/k
along k. The transverse normal variables a, (k) = ¢ - a(k) and a.(k) =
¢’ - a(k) are the same as those used in Chapters I and II. In addition to
these transverse variables one now has a longitudinal normal variable

(k) =k al) = bk, +hoo thoa)  (A4D

and also the normal variable a (k) associated with the scalar potential.
For each value of k, there are then four normal modes of vibration of the
free potential —two transverse, one longitudinal, and one scalar—de-
scribed by the set

{a(k), o, (), 2(k), o (k) | . (A.42)

The elementary excitations of these four types of modes give rise after
quantization to four kinds of photons for each value of k.

¢) FORM OF THE SUBSIDIARY CONDITION FOR THE FREE CLASSICAL FIELD.
GAUGE ARBITRARINESS

Until now we have considered the vector potential and the scalar
potential as independent dynamical variables. We will now introduce the
subsidiary condition (A.16.a), which is written for the free field using
(A.40.c) and (A.40.d):

A, [ n .
VA + 2= d% [——— ik — ko )eikr—on . (A.43
+ - J NEES k.o o) e +coe ( )

If one wishes the subsidiary condition to be satisfied for all r and all ¢, it is
necessary that the coefficient of each exponential in (A.43) be zero, that is,
using the definition (A.41) for «, (which implies k - a = ka,),

(k) — ok) =0 VK. (A .44)

The subsidiary condition then takes a very simple form for the free field in
terms of the normal variables. Among all the solutions (A.40.c) and
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(A.40.d) of the equations of motion, only those for which at every point k
the normal longitudinal variable «,(k) is equal to the normal scalar
variable « (k) have a physical meaning.

The very simple form for the subsidiary condition (A.44) suggests
introducing for each value of k two orthogonal linear combinations of «,
and «,, one of them being precisely «, — a,. We thus take

Ay =

(A.45.3)

ﬁ (o — o)

o =—1(<x, + o). (A.45.b)

T2

We have introduced two new types of normal variables, a, and a,. With
this new notation, the condition (A.44) is written

0 =0. (A.46)

The condition (A .46) restricts the number of degrees of freedom for the
physical field: the normal variable a, is zero for a free physical field. We
will now examine how the gauge arbitrariness associated with the gauge
transformations (A.19) satisfying (A.20) is evidenced. A given physical
field can be described by many sets of normal variables (A .42) satisfying
(A.44) and derived from one another by a gauge transformation. Since all
real functions f satisfying (A.20) can be written

= J ¢k 35— o wh(z 7 F (k) e®r ™ 4 ce (A.47)

the gauge transformation associated with f [A"=A + vf, A{ =4, —
(9f/c dt)] involves, for the normal variables (A.42), the following trans-
formation:

o= o, o = A

£

= o + kF (A.48)

’

o, = oy + kF

S

Expressed as a function of the variables a, and a, defined by (A.45), the
equations (A.48) become

A, = A, Uy = Ay

oy = oy - (A.49)
o, = o, +i/2kF
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A gauge transformation does not modify a,, which is zero for a physical
field, and transforms only the normal variable a,. Finally, the gauge
arbitrariness appears only in the value of a,.

Remark

Since a, = 0, one sees that by taking &= —ag/ik\/z, one can always in a
given Lorentz frame cancel a; and thereby «f and . This shows, as in
Chapters I and II, that the relevant degrees of freedom of the physical field are
described at each point k by the two transverse normal variables «, and a,. It
is however impossible to cancel &, and «, in all the Lorentz frames, since if 4,
is zero in one frame, it no longer is in another. This explains why the
construction of a manifestly covariant theory necessitates the retention of four
types of normal variables combined with the condition (A.46) and the arbitrari-
ness of gauge (A.49).

It will be useful in what follows to reexpress the free potentials as a
function of the variables a, and a,. For this we use (A.40.c) and (A.40.d),
which can also be written in their covariant form (*)

RO 3 h - —ikyxVv * ikyxv
A X)) = Jd k /—2 o) [ (k)e + a¥(k)e™] (A.50)

where k* is the four-vector (w/c, k) with w = c|k| satisfying
Ykk,=0. (A.51)
To give a, and & as a function of the variables a,, a,. a,, and a,, we
start from
(k) = 0,(k) &, + %(K) &, + K Kk, + ok n,  (A.52)

¢, and ¢, are two four-vectors having only spatial components and
constructed from the transverse vectors ¢ and ¢’

e = (0, g)

o 0.) (A.53)

x, is a four-vector having only spatial components and constructed from
the longitudinal vector k:

k* = (0, k) (A.54)

(*) To simplify the notation, we use in the exponentials the convention of summation on
repeated indices (k,x" =X k,x").
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Finally, 7, is a four-vector having only a time component:

— (1,0). (A.55)

We express then the last two terms of (A.52) as a function of a, and «,
thanks to (A.45). This gives

2(K) x, + oK) 1, =
V%Mm@+n)+ 2K (n, — K,). (A.56)

72

A, = AT + 47 + 47 (A.57)

We finally get

where A7, A$, and A are respectively the contributions to A, of the
terms in a, and a,, in a ,and in &, from a,. AZ is the transverse vector
potential, having only spatial transverse components. It agrees with that
studied in Chapter I,

v h ’ — ik, xV
A[(Y) = JvdBk \/m { [Su Ota(k) + &y xs(k)] € k +

+ [e, of(k) + &, (k)] el (ALS8)

Before giving A we note that the components of the four-vector

x* + n* which muluphes a, in (A.56) are, from (A.54) and (A. 55), equal

to (1, ) = k '(k,k), wh1ch are just the components of the four-vector

k*/k. Since on the other hand k, exp(—ik,x") = id, exp(—1ik,x"), one
sees that

AS() = — 2, f(x) (A.59)

where

RO 3 h ikyXV %k ikyxV A 60
>y = jdk\uso w2 1)} k\/ Logthe” ) €] (460

The function f satisfies

Of=>¢,8 =0 (A.61)

v

since &k, k* = 0. Thus AY has the structure of a gauge term.
Finally, using (A.56), 4 is written

Dy v _L 3 h

x (1, = 1) [oy(k) €™ — of(K) €] (A.62)
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From (A.46), a physical state of the field is characterized by 4 f = 0.
We consider finally the electric and magnetic fields, that is, the tensor
E,=9,4,— 3,4,. Now A7 does not contribute to F,,, by virtue of

(A.59), as expected for a gauge term. We find finally for a physical state
(ay=0)

F,=0aAT — 24T =FI. (A.63)

v

The free electric and magnetic fields are purely transverse, and their
expressions as functions of the variables a,, a,, a}, and af agree with

€ e

those of Chapter |, since this is the case for the transverse potential.

d) EXPRESSION OF THE FIELD HAMILTONIAN

To get the expression for Hy in terms of the normal variables, it suffices
to substitute into (A.27) the expressions (A.39) for &/, and %/, and the
analogous expressions for 77; and 7T derived from (A.32), (A.38.a), (A.34),
and (A.38.b). As in §C.4 of Chapter 1, one retains the order between a and
o* as it arises in the calculation, so as to get a result immediately
generalizable to quantum theory. One then gets, after a process analogous

to that in Chapter I,

h
HR = JvdBkTw[(a:( ae + aa a::k) + (0(: as’ + ae' a;k) +
+ (o oy + oy o) — (aF o, + o ak)]. (A.64)

One then sees clearly how the difficulty of the negative sign in (A.64) is
resolved by the subsidiary condition. Although the energy (A.64) can be
negative for some values of the normal variables, the subsidiary condition
(A.44) implies that, for a physical state, the energy associated with the
longitudinal variables compensates exactly that associated with the scalar
variables, the only nonzero contribution being provided, as it must be, by
the transverse variables.

Remarks
(i) By expressing o, and a, as functions of a, and «, by means of (A.45), we
can write Hy in the form
Ti
Hy = [d“k %[w:‘ %o+ o) (o k) F
(o o, — ok ) + il af — 25)]. (A.65)

It thus appears clear that for a physical state (a, = 0), a, does not contribute
to the energy of the free field, which is then exclusively due to the transverse
field and so is positive.
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(ii) An analogous calculation for the momentum of the field, P, given in
(A.28), yields, after symmetrization of the products,

1k
Pp = [d“k%[(x’: %+ oo af) (o A + oo xf) +

+ (o o + o af) = (oF o, + o, aF)] . (A.66)

As for the energy Hy, only the transverse normal variables contribute to P, in a
physical state. By using covariant notation, P* for the momentum-energy of
the field (ordinary components: H./c, P;) and k* for the four-wave-vector
(w/c,k), the two expressions (A.64) and (A.66) can be regrouped in the form

LTk
Pro= | dh — [(2f o, + o, 2%) + (o o + 20 o) +
+ (of 2 4 o o) — (o 2, + o, 25)]. (A67)

(ili) Before quantizing the theory, we return to the definition (A.34) of «, and
imagine that we take the same plus sign as in (A.32), then replacing (A.34) by

= [0 a4 L 7t1 (A.34)
2 hw g

What will be the modification of the results found in this subsection? First of
all, as we have already indicated above, o/ evolves as e'*’ and not as e '“’. The
cancellation of the coefficient of expli(k - r — w¢)] in the subsidiary condition
gives then in place of (A.44)

(k) — 2*(— k) = 0 (A.44)

which is less satisfactory than (A.44). Finally, one can easily prove that
Equation (A.64) for H, remains unchanged, although Equation (A.66) for Py
will be modified, all the signs becoming positive, which then prohibits regroup-
ing the two expressions into one as in (A.67). All these reasons indicate that the
definition (A.34) for «, should be preferred to (A.34') in establishing a
covariant theory.
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B—DIFFICULTIES RAISED BY THE QUANTIZATION
OF THE FREE FIELD

1. Canonical Quantization

In this section, we will proceed with the canonical quantization of the
preceding theory without wondering at this stage about physics, that is to
say, by considering all the degrees of freedom as independent. Then, in the
next section, we will discuss the difficulties which arise in quantum theory
when one tries to introduce the subsidiary condition and to construct
physical states with an arbitrary number of photons.

a) CANONICAL COMMUTATION RELATIONS

As in §A.2.e of Chapter 11, we associate operators with the dynamical
variables and their conjugate momenta. The reality conditions in classical
theory become for the quantum operators

Afr) = A () (B.1.a)
o (k) = (= K) (B.1.b)

and the analogous relations for A, and &/, II, and 7, and Il and T,
When the range of variation of k is limited to a reciprocal half space, all
the foregoing dynamical variables can be thought of as independent.
Quantization then is accomplished by means of the canonical commuta-
tion relation (A.61) of Chapter 1I:

[(k), 7T (k)] = if 5, 6(k — k) (B.2.2)

[Z(k), T; (k)] = ih 3k — k) (B.2.b)

all other commutators being zero. The extension of equations (B.2) when k
and Kk’ vary over all space is done as in §C.4.a of Chapter II, using (B.1.b)
and analogous expressions for TT;, o/, and Tl

The commutators (B.2) are equal-time commutators (Schrodinger ap-
proach). Canonical quantization thus favors time, which, at first sight,
seems poorly adapted to a covariant formalism. We will see below,
however, that it leads in the Heisenberg picture to manifestly covariant
expressions for the commutators of free potentials at any two points in
space—time, r, t and r’, ¢'.
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b) ANNIHILATION AND CREATION OPERATORS

The classical normal variables a and a, become after canonical
quantization the annihilation operators a, and a, which are related to the
operators &;, T,, &, and T by expressions identical to (A.32) and

(A.34):
ak) = /2871 [m«(kw n(k)} (B.3.2)
k) = oA (k) — L . B.3.b
ak) = [ [w ® - Ons(k)} (B.3.b)

The adjoint operators of a, and a,, a and a;, are the creation
operators.

The sign difference between the last terms on the right in (B.3.a) and
(B.3.b) introduces important changes in the commutators between the
creation and annihilation operators. Indeed, the canonical commutation
relations (B.2) for the operators defined in (B.3) and their adjoints (k and

k’ now vary over all space) imply

[a(k). a;’(k')] = J;;0(k — k) (B.4.a)
[a(k), a; (k)] = — o(k — k) (B.4.b)

all other commutators being zero. For the three spatial degrees of freedom
(i, j = x, y, z), one gets the usual commutation relations for a quantum
harmonic oscillator. On the other hand, for the scalar degree of freedom,
(B.4.b) differs from the usual relation by a — sign. We will see below the
difficulties which arise from this — sign in the construction of state space.
Note finally that Equations (B.4.a) and (B.4.b) can be regrouped into a
single expression with covariant notation

[ak).a;(K)] = — g,, o(k — k). (B.5)

Remarks

(i) a, is the operator associated with the normal variable «,. We should point
out that, in spite of the notation used, the a, are not the components of a
four-vector.

(i) The operators a,, a,, and a, can always be replaced by a,, a,, and a,.
Since the corresponding transformation is orthogonal, Equation (B.4.a) be-
comes

[a(k). a7 (k)] = 8, o(k — K) (B.6.a)
[a(k), ¢ (k)] = 3k — k) (B.6.b)

all other commutators being zero.
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It is also clear that the important physical variables, such as the field
energy Hy, the momentum P, and the fields, can be given as functions of
the creation and annihilation operators. Thus, the energy Hy of the field is
gotten by replacing the normal variables « and o* with the operators a
and a” in (A.64), which gives

HR = Jvd}k%u_)[(a: ae + a£ Cl:) + (a: as' + as’ a:) +
+(a a, + a;a) — (4] a; + a;a])] (B.7)
and more generally, starting from (A.67),
1
P, = —Jvd3’k§hku‘Z‘;g""(a:r aﬂ—}—aﬂa:’). (B.8)

¢) COVARIANT COMMUTATION RELATIONS BETWEEN THE FREE POTENTIALS
IN THE HEISENBERG PICTURE

The free potentials in the Heisenberg picture are gotten by replacing a,
and o} with g, and a, in the classical expression (A.50), which gives,
using covariant notation,

vy 3 h —ikyxV + k ikyxV
Au(x)—Jdk ,_——280(1)(271)3 [au(k)e +a;(k)e 1. (B.9)

The commutation relations (B.5) then show that

[A,(r, 1), A(r, )] =

_ X d3k ik(r—r)—iw(—1t) . B.10
g‘“J 2 gy (2 m)? le el )

The triple integral of (B.10) can be transformed into a quadruple integral
fd*k, the constraint (A.51) being introduced through a delta function

dko — Ik 1)  Olko + kJ)

3k k) = 3ks — k%) = =55 + — g

., (B.11)

which has the additional advantage of absorbing the factor 1/w = 1/c|k|
in (B.10). By introducing the sign function of k,, n(k,), one can finally
rewrite (B.10) in the manifestly covariant form

! r ih ’ r
[4,(r. 1), A, 1)] :aguvD(r—r.t— 9] (B.12)
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with

i
@]

D(r, 1) = Jd‘*k e * ok, k") n(k°). (B.13)

Note finally that it is possible to calculate the triple integral of (B.10)
directly and thus to establish

1
D(r, 1) = g [o(r — c1) — 8(r + c1)] (B.14)
which shows that D is zero throughout except on the light cone.

Remarks

(i) Note that the function D has been already introduced in Complement C ;.
It is possible to get the commutators between the components of the electro-
magnetic field by using (B.12). One then gets expressions identical to those
found in Complement C;; [Equations (20)].

(i) Starting from (B.8) for P, and the commutation relations (B.5), it is
possible to show that

[P,.a(k)] = — fik, a,(k) (B.15)
and also, using (B.9),
[P, At O] = — il &, Ar, 1) (B.16)

The P, appear then as the generators of space-time translations in state space.
We have derived (B.16) from (B.5) here, that is, from the canonical commuta-
tion relations. A completely covariant quantization would follow the inverse
path. It would start from the study of the symmetries of the Lagrangian,
establishing the expressions for the physical variables associated with the
generators of the Lorentz group; one would then postulate (B.16) and the
analogous equations for the other group generators, to finally derive (B.5)
from (B.16).

2. Problems of Physical Interpretation Raised by Covariant Quantization

The approach followed in the preceding section permits us to derive
manifestly covariant commutation relations like (B.12) or (B.16) and then
to construct a theoretical framework better adapted to relativity than
those of Chapter II, where the symmetry between A and U was broken.
We are now going to examine the problems of physical interpretation
posed by covariant quantization. Some difficulties appear at this level,
which are much more serious than in the classical theory examined in the
section above, where it was sufficient to impose the subsidiary condition
(A.44) to get good physical states.
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a) THE FORM OF THE SUBSIDIARY CONDITION IN QUANTUM THEORY

A treatment identical to that of §A.3.c above for the free field leads to
a condition analogous to (A.44), where «, and a, are replaced by a, and
a, respectively. It is clear however that an identity like (A.44) cannot be
satisfied by operators like @, and a,, which act in different subspaces of
the state space—the subspace of longitudinal photons and the subspace of
scalar photons. In the covariant quantum theory, Maxwell’s equations can
no longer hold between operators, since it is not possible to impose the
subsidiary condition as an operator identity.

One can then try to use the subsidiary condition to select the physical
states |¢) by requiring these states to be eigenvectors of X, d, 4" with the
eigenvalue zero:

Y A"y > =0. B.17

This relation must be true for all r and for all ¢, so that an expansion
analogous to (A.43) leads to the following two conditions (valid for all k):

[a(k) — a(K)]ly > =0 (B.18.a)
[a/ (k) — a7 K]y > =0. (B.18.b)
In fact, such conditions are too strong, and it is possible to show that the

equations (B.17) or (B.18) do not have a physical solution. A condition
less strong than (B.17) or (B.18) is that for all r and all 7 one has

CylY ey > =0 vrt. (B.19)

The physical states |¢) are then such that the subsidiary condition is
satisfied for the mean value in these states. The concern with (B.19) is that
its solutions do not necessarily form a vector subspace of the state space.
For this reason one prefers to use the subsidiary condition in the form

28,4 Yy =0 (B.20)

where A** is the positive-frequency component of A*, containing only
the terms in e ' For the free field, (B.9) shows that this condition is
satisfied for all r and all ¢ if

[a(k) — a (K] |y > =0 Vk. (B.21)
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The solutions of (B.20) or (B.21) form a vector subspace of state space and
are all solutions of (B.19).

It is in the form (B.21) that we hereafter use the subsidiary condition to
characterize the physical states of the free field (*).

b) PROBLEMS RAISED BY THE CONSTRUCTION OF STATE SPACE

It seems logical first to postulate the existence of a state |0) with no
photons, on which the action of every annihilation operator a,(k) gives
zero, since it is impossible to remove a photon from the vacuum:

a)]0>=0 Vuk. (B.22)

Note in particular that (B.22) implies that the vacuum obeys (B.21) and is
therefore a physical state, a satisfying result.

The next stage then involves trying to construct states having any
number of photons by the repeated action of the creation operator a,/ on
the vacuum. For the transverse and longitudinal photons this poses no
problem, since the commutation relations (B.4.a) or (B.6) have the usual
form. For example, a state having n (k) photons k, ¢, (k') photons k', ¢’
and n,(k”) photons k”, k" is written with simplified notation as

’

_ @y @) @)

Tn, tn !
ntn, !

|n,., n., 1o

10 (B.23)

On the other hand, for scalar photons, serious difficulties appear. Calcu-
late for example the norm of the state having one scalar photon.

> = Jd3k g(k)aj (k)]0 . (B.24)

By using the commutation relation (B.4.b) and (B.22), one gets

<yl = JJ d*k d*k g*(K') g(k) < O [ afk) a; (k)] 0
(B.25)
= ~<0|0>Jd3k|g(k)lz~

(*) In §D.3.a4 below and in §A, .3.c, we indicate how one can generalize (B.21) for a
quantized radiation field coupled to external sources or to the Dirac field.
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It appears then that the vacuum |0) and the state |¢) having one scalar
photon have norms with opposite signs, which is wholly unacceptable in a
Hilbert space, where all the norms must be positive to permit a probabilis-
tic interpretation.

It seems necessary then to generalize the notion of norm in the state
space so as to include in this space states with negative norms, besides the
physical states which are distinguished by the subsidiary condition and
which should have finite and positive norms.

Remark

One may be tempted to think that the interpretation of a, (a) as an
annihilation (creation) operator is erroneous and that one should exchange
their roles. We take then

b(k) = a (k) (B.26.2)
br (k) = ak) (B.26.b)

and treat b, as an annihilation operator and b as a creation operator
satisfying a commutation relation identical to (B.4.a):

[h,(k), b (k)] = o(k — k') (B.27)
and derived from (B.4.b) and (B.26). The scalar photon vacuum then satisfies
b [0 = al (k)0 = 0. (B.28)

On the other hand, the subsidiary condition (B.21) gotten by cancelling the
coefficient of expli(k - r — )] in 9, A°*™ remains unchanged and is written,
with the notation (B.26),

[ak) = bJ(K)] | > =0 Vk. (B.29)

But new difficulties then arise. First, the new vacuum defined in (B.28) no
longer satisfies (B.29) and can no longer be thought of as a physical state.
Additionally, it is possible to show (see Exercise 2) that the solutions of (B.29)
with this new interpretation of a4, = b" as a creation operator are not normal-
izable. Thus the — sign in (B.4.b) leads us either to a one-scalar-photon state
with negative norm (if we take @, as an annihilation operator and a; as a
creation operator), or to physical states with infinite norm (if we reverse the
interpretations of a, and a). The second eventuality is in fact much worse
than the first, since it involves physical states, which is not the case for the
one-scalar-photon states (B.24). It is for this reason that we revert to the
original interpretation of a4, and a;.
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C—COVARIANT QUANTIZATION WITH AN
INDEFINITE METRIC

In this third part we present a method which solves the difficulties
mentioned in the discussion of §B.2. First, we show (§C.1) that it is
possible to introduce in a Hilbert space a second scalar product leading to
a second norm not necessarily positive definite (indefinite metric). This
new scalar product allows us to define a new adjoint for each operator and
a new mean value. Canonical quantization is then done (§C.2) by replac-
ing the Hermitian conjugate operators with the new adjoints throughout
the preceding theory, the new metric being chosen so as to resolve the
difficulties associated with the scalar potential. We then construct (§C.3)
the physical kets obeying the subsidiary condition (B.21), and show finally
(8C.4) that for these kets all of the predictions about physical variables
only involve the transverse degrees of freedom and conform to the usual
quantum interpretation.

1. Indefinite Metric in Hilbert Space

Consider a Hilbert space with the usual Dirac notation (ket |¢), bra
{$]), with the usual scalar product {$|¢) = {({y}¢)>* linear with respect
to |¢ ) and antilinear with respect to {¢|, and with a norm {y|{) which is
positive definite, that is, strictly positive, and zero if and only if |{) = 0.

Starting with a Hermitian, unitary linear operator M in this space, that
is, such that

M=M"=M" (C.1)
we introduce a second scalar product defined by

Coly D =(PIM|y). (C.2)

We will use the “round” Dirac notation | > and < | for this new scalar
product. It is equivalent to say that one associates with the old ket |
and bra {(¢| the new ket |¢ D and bra C ¢| defined by

{ll//3=|l//> (C.3.9)
Col=<¢Pp| M. (C.3.b)
From (C.1) and (C.2) it follows that

Coly > =CylgpO* (C.4)
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and that C¢[¢>D is linear with respect to |¢ D and antilinear with
respect to C ¢|. The new scalar product then has some of the usual
properties of an ordinary scalar product. In contrast, the new norm
Cy|yD is not necessarily positive definite. To see this, consider the
eigenvectors |m;) of M with eigenvalues m,. As a result of (C.1), m, is
real and necessarily equal to +1 or —1. Replacing M by X.m,|m, Y(m,|
n (C.2), one gets

CYlyd =Y IMIy>=Ym|{mly>|*. (C.5)

Since some m, can be equal to —1, it appears clear from (C.5) that
Cy|¢ D although real can take zero or negative values. The new metric
associated with M is called indefinite in this case.

Starting from the new scalar product, one can introduce new matrix
elements for a linear operator 4,

ColAlY D =PI MAY (C.6)

and a new adjoint of A, which we denote 4 to distinguish it from the old
A" and which is defined by

ColAlYy D = CylA|p D+ (C.7

for all ¥ and ¢. Equations (C.4) and (C.7) also imply that

W' D> =AYy D <« CY|=CylA. (C.8)

What is the relationship between the new adjoint 4 and the old 4*? To
get this relationship, it is sufficient to express the two terms of (C.7) in
terms of the usual kets:

ColAlY D =< PIMAY> (C.9.2)
CYlAld D*=C P I MAGY* ={plA*M*|¢y>. (C.9.b)

Comparison of (C.9.a) and (C.9.b) then gives MA = A*M"—that is,
finally, since M?>=1and M = M*,

A=MA"M (C.10)
A is Hermitian in the new metric if
A=4 (C.11)

and then has, by (C.7), real diagonal elements. By definition, the new mean
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value in state { of an operator 4 is the quantity

(C.12)

which is real if 4 = 4 and which generalizes in the new metric the
well-known usual mean value. We suppose of course that CyY|YyD is
different from zero in (C.12).

Remarks

(1) The notion of eigenvector and eigenvalue is independent of any metric. The
eigenvalues A, of a linear operator A are therefore the same whether one uses
the old or the new metric. One can also say from (C.3.a) that the equation

Ale: > = Ale > (C.13.2)
implies
Al 2= Ale; D> . (C.13.b)

Note incidentally that the eigenvalue A, of A4 can be thought of as the old mean
value of A as well as the new in the eigenstate ¢, Actually, by projecting
(C13.2) on (@,| and (C.13b) on Cg,|, one gets, if C¢,|¢, D is nonzero
(recall that (o, |,) is always nonzero except if |¢,) is zero),

. Lo lAle>
& Coile> (C.14.9)
. Cold]le D
/.i—W. (C.14.b)

If C¢|¢ > is zero, the second equality (C.14) is no longer valid (inde-
terminate form).

(i) Assume that 4 = 4 but A # A" (for example A = — A", the operator 4
being antihermitian in the usual sense). Since

(p1419) =, 4" 1g)* = —{p,|d|q)*

is then purely imaginary, the first equality (C.14) implies that A, is purely
imaginary. In contrast, since 4 = 4, C¢|A|$,D is real and the second
equality (C.14) seems to indicate that A, is real. This contradiction is only
apparent, insomuch as one can show (see Exercise 3) that if 4 = 4 and if A, is
not real, then C¢,|¢, D is necessarily zero, with the result that (C.14.b) is no
longer valid.

(iii) Let {|u,)} be a basis of the state space, orthonormal in the usual sense
and satisfying the closure relationship

Yluy > {u, | =14, (C.15.a)
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Using (u,| = Cu,|M, which follows from (C.3.b) and M? =1, this relation
can then be written

Ylu, 2 Cu, I M =1 (C.15.b)

Equations (C.15.a) and (C.15.b) are useful in relating the two types of compo-
nents (u,|¢) and Cu,|¥D of a vector |§) in the state space (Exercise 3).

We must finally emphasize that the new mean value does not have the
same physical content as the old. Even if 4 = A, it is not possible in
general to give a probabilistic interpretation to (C.12) like that given to
usual mean values of a Hermitian operator in the old sense, 4 = 4.
Recall this interpretation: {A), = (Y|4|¢y)/{Y|¥) is, when A = 4 *, the
average of the eigenvalues A, of A4 (which are real, since 4 =4 ")
weighted by the probabilities 7, = |(@,[¥)|>/(¢|¢) of finding A; for the
system in state | ). When 4 = Aand A # A", it can happen that certain
eigenvalues of A4 are not real, so that it is out of the question to interpret
them as results of a measurement. One can then question the interest of
introducing (C.12). The new mean value is in fact interesting for variables
like the potentials, which, although real in classical theory, are not truly
physical variables in the sense that their precise value varies according to
the gauge. The quantum measurement postulates do not apply in fact to
potentials, and it is not absurd to associate them with operators A4 # A4 *.
(This indeed can be very useful, as we shall see below.) However, it 1s
important that the potentials satisfy 4 = A, so that their new mean value
(C.12) is real. Such a reality condition is actually essential if one wants the
mean values of the quantum equations of motion to coincide with the
classical equations of motion, where the potentials are real functions of r
and ¢. If we abandon the Hermiticity of the potentials in the sense of the
old metric and replace it by Hermiticity in the new sense, we will have to
check afterwards that the old and new mean values of measurable physical
variables like the electric and magnetic fields agree when they are taken in
physical states.

Finally, the generalization given here offers the possibility of admitting
new states with negative norm and of considering operators that are
non-Hermitian in the old sense (4 # 4 *) but Hermitian in the new
(A = A), which allows one to associate with these operators new real
mean values. It is this flexibility in the formalism which will allow us to
resolve the difficulties associated with the scalar potential in what follows.

2. Choice of the New Metric for Covariant Quantization

To resolve the difficulties mentioned at the end of Part B, we are now
going to introduce a new metric in the radiation state space. Since all the
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mean values will ultimately be calculated in this new metric and these new
mean values must be real for the potentials, we must require that the
potential operators be Hermitian in the new sense

Alr) = 4,(r) (C.16.2)
A (k) = o (— k) (C.16.b)

and analogous conditions for 11, and 7,. All the calculations in Part B
above remain valid under the condition that all the old adjoints are
replaced by the new throughout, in particular a, by a,. For example,
starting from Equations (A.40.a), (A.40.b), (B.4), (B.7), one gets

- 3 h ik.r - —ik.r
A,(r) = Jd k /—__2 s [a,k) e + G (k)e *] (C.17)

[ai(k), @ (k)] = 5;‘]‘ ok — k') (C.18.2)

(k). 2,(k)] = ~ o(k — K) (C.18.b)

fiR - [\d3k % [(55 a, + a, 5}:) + (ZI_E a, + dy ab) +

+ (@ a +aa) —(@a, + a;a)] (C.19)

How can one choose the metric M? Since all the difficulties come from
the — sign in (C.18.b), the simplest idea is to use the possible difference
between a; and a, to correct this sign. Assume, for example, that one has
succeeded in finding M such that

a, = Ma; M = a/ (C.20.a)

J

a,=Ma* M= —a. (C.20.b)

s s S

In other words, M commutes with @, but anticommutes with a,. The
commutation relations (C.18.a) remain valid for the operators a; and a/
relative to the spatial degrees of freedom, whereas (C.18.b) becomes

La,(k), a; (k)] = d(k — k') (C.21)

a, and a; then become completely “normal” annihilation and creation
operators and allow one to construct the state space of scalar photons
without difficulty. In addition, since (C.20.a) implies a, = a, a

— +
e =4a.,
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and a,= a;, the Hamiltonian (C.19) written as a function of the old
adjoints becomes, using (C.20.b),

how
HR B J‘dSkT [(a; aﬁ + aS Cl:) + (Cl: af.' + az:' a.:’—) +

+(a a + a,a") + (af a; + a,af)] (C.22)

and has only + signs. The energy then becomes positive definite (recall
that the eigenvalues of an operator are independent of the metric; see
Remark i of §C.1 above).

Before going farther, note that a, = —a; implies that the scalar
potential A, is now anti-Hermitian in the old sense (Af = —A,), since
one requires it to be Hermitian in the new [Equations (C.17)]. The
reestablishment of the + sign in (C.21) is then achieved at the price of
abandoning the hermiticity of A, in the usual sense. It is thus no longer
possible to apply the quantum-mechanical postulates to 4. This is not
troublesome, however, since A_ is not a truly physical variable.

We now show how it is possible to satisfy (C.20). First, we introduce a
basis of states for each scalar mode (*),

((l: )ns
In, > = 10,5 (C.23)
N
normalized in the usual sense:
{nglng ) = 0,,,. (C.24)

The action of a, and a; on |n,) is well known, since the commutation
relation [a, a]] = 1 is “normal”:

af |ngy =n + 1ng+1) (C.25.a)
ajlngy =/nn — 1> (C.25.b)
a |0,> =0 (C.25.¢0)

and that of a_ is gotten from (C.20.b):
ag lngy = —n +1|n +1>. (C.26)

(*) To ease the notation, we omit the index k for the mode. We also assume that the field
is quantized in a box so as to have discrete modes k.
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Consider now the Hermitian unitary operator M defined by
Mingy =(=1D"|n ). (C.27)
From (C.25.a), (C.26), and (C.27) it follows that
ingy = (= g+ Tng + 1) = —a* M|n, ) (C.28)

which, since the set {|n )} forms a basis, implies that Ma} = —a*M
and thus proves (C.20.b). Equation (C.27) then permits the calculatlon of
new scalar products

Cnlng > = M)y = (= 1)y=o,,.. (C.29)

The vacuum has a new positive norm, but the one-photon scalar states
have a new negative norm. The generalization presented in this section
then allows us to include in the formalism situations like those mentioned
above (§B.2).

Remark

Suppose that we change the phase factors of the basis vectors (C.23) by taking

> == el (C.30)

v !

s0 as to have a more satisfactory expression for |n,) as a function of @, and

’0\>’ _
(a))™

In > = f—JO > (C.31)
N N
Equations (C.26), (C.25.b), and (C.25.a) then become
aln > =yn +1|n +15 (C.32.a)
alny =~ /nln — 15 (C.32.b)
al lngy = —yn +1T[n +1). (C.32.0)

Equation (C.27), which does not depend on the phase factor of |n,), remains
unchanged, as does (C.29), which follows from it. Depending on whether we
choose (C.23) or (C.30), one can then say that, with respect to the usual
harmonic-oscillator theory, it is sufficient to attach a — sign either to the
matrix elements of a, [if (C.23) is chosen] or to the matrix elements of a, [if
(C.30) is chosen].

3. Construction of the Physical Kets

The very simple form of the subsidiary condition (B.21) suggests the
introduction for each value of k of two linear “orthogonal” combinations
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of a, and a,, thereby generalizing the normal variables (A.45) to the
quantum case. We thus take

i
ag = —=(a; — ay) (C.33.9)
V2

1
a, = —(a, + a,). (C.33.b)

J2

Using (C.18.a), (C.20.a), and (C.21), the new operators a, and a, thus
introduced satisfy the equations

[a,(K), a} (kY] = 6(k — K') (C.34.2)
[4,(k). 4} (k)] = o(k — k) (C.34.b)
las.a,) = [a,.af] = 0. (C.34.¢)

The relationships (C.33) then allow the introduction for each value of k of
two new types of modes, d and g, with two types of photons, the
“d-photons” and the “g-photons” respectively. Note incidentally that the
vacuum of d and g photons coincides with the vacuum of / and s
photons, since the expressions (C.33) imply

a,;10,0,> =0 (C.35.a)
a,10,0,> =0 (C.35.b)

which shows that
1040,>=10,0,>. (C.36)

With this new notation the subsidiary condition (B.21) is written
ag|l ) =0 (C.37)

which generalizes (A.46) and implies that the physical kets have no
d-photon. The subsidiary condition specifies nothing on the other hand
about the state of the g-mode, which can be anything (nor, obviously,
about the state of the transverse modes ¢ and &').

We now construct a basis for the space of physical kets. For each value
of k we have

V(TN (1t Y
iy Oy, 5 S V@G g (C.38)

ntngtn!

The numbers of transverse photons, n, and n,, can be anything, as can
the number of g-photons. On the other hand, the number of d-photons is
necessarily zero from (C.37). The set of vectors (C.38) forms an orthonor-
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mal basis in the usual sense in the subspace of physical kets:

<ngng Ogng | ngng, gm0 > = 0,,.0, . Orpyng - (C.39)
What can be said, on the other hand, about the new scalar products
involving the basis vectors (C.38)? Since Cn,n |nin. D= (nn|ninl)
=38, ,..8,,,,, it suffices to find COyn, IOdn D. Accordmg to (C 38)
[n,2 = |ng> is expressible as a function of ag In order to find C O n |,
we must first determine the new adjoint a of a;. Now the equations
(C.33) give

3= __‘7_3 :_L(a,++a;)=~ia; (C.40.a)

d \/2’ (al as) \/E

Y -at) = +ia) (C.40.b)

L
\/5 1 s

L@ +a-=

Clgz\/E

which shows that

QI

Y= g, (C.41)

[4

Also, since from (C.34.c) a, commutes with a,, and from (C.40.a)

+
a, =1ia,, one has

lag,a) = 0. (C.42)
One can then write, using (C.40.a), (C.41), and (C.42),

Vg g 1 C0ny 10gmy 5 = C 0,0, (@) (a,)]0,0, >
= (i) " C 0, 0, | (an)"(ay)™ | 0, 0, >
= ()" C 0,0, | @)’ [0,0, > = 8,40, (C.43)

Finally, all the basis vectors of the subspace of physical kets have a zero
new scalar product and a zero new norm unless n = 0

C nc nﬂ’ Od ng | I’lé nt/:’ Od H o o= On N ()nc ni ()ngO ()‘néO - (C44)

Consider now, for one value of k, a physical radiation ket

|¢>:|¢T>®|¢Ls> (C-45)

describing a situation where the transverse degrees of freedom are in the
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state |¢,) and the longitudinal and scalar degrees of freedom are in the
physical state

|WLS>:ZCn|Od”g> (C.46)

in which n, is always zero. Using (C.44), the new norm of |{) becomes

Cyly >

C¥rl¥r > Cyuslibns D
CYrlvrdle (C.47)

This relation can easily be generalized to a situation where [y is ex-
panded on all the transverse modes k, and |y, ¢) on all the modes (K, g).
with 7, being zero always. Equation (C.47) remains valid, ¢, representing
the component of |, ) on the vacuum of all the modes (k, d) and (k, g).
It appears then that the new norm of a physical ket is proportional to the
old norm of its transverse component, the coefficient of proportionality
|co!® being the square of the modulus of the component of |, ) on the
vacuum of modes d and g—or equivalently, from (C.36), on the vacuum
of modes / and s.

4. Mean Values of the Physical Variables in a Physical Ket

Having characterized the physical kets by the condition (C.37). we now
find the mean value of the various physical variables (potentials, fields,
energy) in these kets.

a) MEAN VALUES OF THE POTENTIALS AND THE FIELDS

As in (A.57), we write the potentials 4, in the form

A, = AT + A + A7 (C.48)

where AT, A, A? are given by expressions identical to (A.58), (A.59), and
(A.62) except that the normal classical variables a,. a,, &, o, af, a¥,
aj, a¥ are replaced by the OpErators a,, d,. . dy, d,, a., ag d,.

Since the operators appearing in AI act only on the transverse degrees
of freedom, it follows that

CylAl Iy D _ ol A e D Cusl¥us O
Cyly > Cplbr D Chuslins 2
<WT1AMT|¢’T>
el >

(C.49)



V.C4 Covariant Quantization with an Indefinite Metric 397

The new mean value of the transverse potential agrees with the old. Such a
result is satisfying, since A[, which is gauge invariant, can be considered
as a truly physical variable.

From (A.62), Af is a linear superposition of the operators a, and a,.
Since the subsidiary condition (C.37) implies that a )y > = 0 and C Ylay,
= 0, the new mean value of A,’f in the physical ket |¢ ) is zero:

Cyl4 ¥ D
S

Consider finally A,f. Since Af does not act on the transverse degrees of
freedom, its mean value involves only |y, ;) and using (A.59) is written

0. (C.50)

CylAlly D
Cyly D

where CfD is the new mean value in the state |y ), of the operator f,
gotten by replacing a, and ay with a ¢ and a, in (A.60).
Finally, the new mean value of (C.48) is written using (C.49), (C.50),

and (C.51) as

= -0, CfD (C.51)

CYIAIY D _ Chrl 4] e
YIS Ul

It differs from the old mean value of the transverse potential only by a
gauge term.

The mean value of the electromagnetic field tensor F,=d,4,-4,4,
can be deduced from the previous results: C F; P> = 0 because of (C.50),

and C FD = 0 because CAJD is a gauge term according to (C.51). It
follows that

e, f 0. (C.5)

CUIFL WS Yy FLrd
IR AT (€.53)

The new mean value of the fields agrees with the old one found by taking
account of only the transverse degrees of freedom.

b) GAUGE ARBITRARINESS AND ARBITRARINESS OF THE KETS ASSOCIATED
WITH A PHYSICAL STATE

The above results permit us to understand the role played by the
excitation of the g-modes, about which the subsidiary condition does not
provide any information.

To a given physical state of the transverse field there corresponds a set
of physical kets of the form (C.45). For these kets, |y, ) is fixed but |y, )
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can describe an arbitrary excitation of the g-modes, the d-modes in
contrast being always in the vacuum state. This arbitrariness corresponds
to the remaining gauge arbitrariness on the potentials. Two different
excitations of the g-modes correspond to two different gauges, and thus to
two different mean values of the potentials but nevertheless to the same
mean values for the truly physical variables F,, and 4.

Covariant quantization with an indefinite metric finally allows us to
introduce in the physical kets themselves the gauge arbitrariness, while
preserving for the measurable physical variables predictions identical to
those of Chapters II and IIL

¢) MEAN VALUE OF THE HAMILTONIAN

Starting from (C.33), it is possible to show that
a' a, +af a,=af a; + a, a,. (C.54)
Then, using (C.22), one can write
H,=HI + HY (C.55)

where H} is the purely transverse Hamiltonian of Chapters II and III,
and where H}S is written for a given value of k (and by omitting the
zero-point energy) as

LS + +
Hy® = hoa, a, + af ag)

=i hw(a, a, — a, a,) . (C.56)

where (C.40) has been used to replace a, byia, and a; by —ia,. Thisis
a natural generalization of the classical expression (A.65). Since in a
physical state a, |y D and Cy|a, are zero, it follows that

CY I HR 1y D

U =0 (C.57)

and also

CylHg YD (Yl He 1Yo
Cyly o YYD

The new mean value of the total Hamiltonian Hg in a physical ket then
agrees with the old mean value of the energy of the transverse field.

(C.58)
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Finally, by a generalization of the metric in the state space of the
radiation, we have been able to solve all the problems posed by the
subsidiary condition and by the sign of the commutation relation relative
to the scalar potential. We have identified the different physical kets
corresponding to a single given physical state, related the multiplicity of
these kets to the gauge arbitrariness, and shown the equivalence of the
theory thereby presented with that of Chapters II and III for all the
predictions concerning physical variables and physical states.
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D—A SIMPLE EXAMPLE OF INTERACTION: A QUANTIZED
FIELD COUPLED TO TWO FIXED EXTERNAL CHARGES

In the preceding parts we were essentially dealing with the free field.
The main purpose was to establish how it is possible to reconcile the
presence in the covariant theory of four kinds of photons with the fact
that the only physical photons are free transverse photons. However, since
we had not given the form of the particle Lagrangian, it was impossible to
study relativistic quantum electrodynamics in the presence of interactions.

We have however treated the simpler case of fields coupled to external
sources, that is, sources with a given time dependence. It suffices then for
the study of the evolution of the field to add to the Lagrangian or
Hamiltonian of the free field an interaction term [see for example (A.29)].

In this final part, we consider a particularly simple example of this type
of situations: a quantized field coupled to two external fixed charges. Our
purpose is to illustrate here the role played in the interaction by the new
types of photons (longitudinal and scalar) introduced by the covariant
theory.

1. Hamiltonian for the Problem

Consider two fixed charges g, and g, situated at r, and r,. The
corresponding external charge density is given in real space by

Plr) = g, o(r —1y) + q, 6(r — 1) (D.1)

and in reciprocal space by
] —ik.ry —ik.ra
p.(k) :(——2 o [qy e ™" 4 g, e"er2, (D.2)

In the presence of a current four-vector j,,, it is necessary to add to the
Hamiltonian of the free field, Hp, the coupling term V =L, [d*,,4*
[see Equation (A.29)]. The Hamiltonian H which describes the evolution
of the field in the presence of the two charges is then written

H=Hy +V (D.3)

where Hp is given in (C.19) and where, since the only nonzero component
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of Jeu 18 j.o = cp,,
V= Jd3r cp.(r) A(r)

= cq; A(ry) + cq, A(ry) (D.49

By using the expansion (C.17) of the potentials, one gets

h . .
_ 3 k ik.ry ik.ra
14 Jdkc ———280w<2n)3[a5()(41e + g, %) +

+a(k) (g e” ™" + g e” )] (D.5)

that is, finally, using (D.2),

V= f d*%k /zg’zw[as(lo pr®) + k) pM].  (D.6)

2. Energy Shift of the Ground State of the Field. Reinterpretation of
Coulomb’s Law

In the absence of sources (p, = 0), the ground state of Hy is the photon
vacuum |0). When one introduces the two charges ¢, and ¢, at r, and r,,
the new ground state of the field, that is of (D.3), is going to be modified
and shifted by an amount AE depending on ¢, and ¢,. We first derive
here a perturbative expression for AE by studying the shift of the ground
state of H, to second order in V. We show that one gets in this way the
Coulomb energy of the system of two charges. Coulomb’s law can thus be
reinterpreted, in this approach, as being due to an exchange of scalar
photons between the two charges. Finally, we shall see that the expression
gotten for AE to second order in V is in fact valid to all orders.

a) PERTURBATIVE CALCULATION OF THE ENERGY SHIFT

We have already mentioned that the eigenvalues of an operator are
independent of the metric (Remark i of §C.1). To determine the energy
shift AE of the ground state |0) of Hy due to the potential ¥, we can thus
apply the usual expression given by perturbation theory, with the matrix
elements of V evaluated in the usual Hilbert-space metric. To second
order in V, we then get, since |0) is not degenerate,

AE=<O|V|O>+<O|VEO—QH—;V|O> (D.7)
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where E; is the unperturbed energy of [0) and where Q is the projection
operator on the subspace orthogonal to |0). Since the diagonal elements
of a, and a, which arise in the expression (D.6) for V are zero, the first
term of (D.7) is zero. In addition, since V' can only create or destroy a
scalar photon, the only type of intermediate state which can arise in the
second term of (D.7) is the state |ks) of a scalar photon k. The energy of
such a state is greater than that of the vacuum by Aw, so that the energy
denominator of (D.7) becomes E, — (E, + hw) = —hw. Finally, we get
for AE

(D.8)

AE=Jd3k<OIV|kS><kSIV|O>.
— hw

According to the selection rules for the operators o, and a_,

<O|V|ks>=cjd3k’ / f - 0] adk) | ks> pXk) (D.9.a)
2eg,w

<ks|V|O>:ch3k” / f - ks|ak”) 0> p(k"). (D.9.v)
2eg,w

Finally, we have seen above that the matrix elements of a, and a, always
have opposite signs, whatever may be the convention chosen for the states
|n,) [see (C.25.b) and (C.26) or (C.32)], so that

COJadk) ks> (ks|ak”)|0> = — 5k — k') 6(k — k). (D.10)
Substituting (D.9) and (D.10) in (D.8) gives finally

pE(k) p (k)

D.11
N ( )

AE = J d*k
This is the expression for the Coulomb energy of the charge distribution
characterized by p, (k) [see (B.32) and (B.37) of Chapter I], which can be
also written

d1 4>

— _ o1 2 1Mz
AE = VCoul = €Coul + €Coul + 4 e Ir —r I
0 1 2

(D.12)

The first two terms of (D.12) represent the Coulomb self-energy of the two
charges, ¢, and g,, and the last term the Coulomb interaction energy
between them.

Remark

One should note the importance of the — sign appearing in (D.10), which
implies that the product of the two matrix elements of V' appearing in the
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numerator of (D.8) is negative, so that AE is ultimately positive for charges
with the same sign (see also D.11). If the operator associated with the scalar
potential were Hermitian in the usual sense, so would V' be, and the numerator
of (D.8) would be positive, leading to an energy shift AE < 0. This result
simply recalls the fact that the shift of the ground state due to a Hermitian
potential is always negative to second order, the ground state being pushed
downwards by the excited states. It is because the operator associated with the
scalar potential is anti-Hermitian in the initial metric, but Hermitian in the new
one, that we finally find a positive Coulomb energy.

b) PHYSICAL DISCUSSION. EXCHANGE OF SCALAR PHOTONS BETWEEN THE
Two CHARGES

The Coulomb energy appears then as associated with a second-order
perturbation term (D.8). The structure of this expression then suggests the
following physical interpretation. The field, initially in the vacuum state,
makes under the effect of V' a transition to the intermediate state |ks)
and then returns to its initial state. In other words, a scalar photon k is
emitted virtually and then reabsorbed.

The term in ¢,q, of AE is obtained either by taking the term in g, of p
in the matrix element (ks|¥'|0) and the term in ¢, in (0| V|ks), in which
case it is the charge g, which emits a virtual scalar photon reabsorbed
subsequently by ¢,, or the inverse process, in which case it is g, which
emits a virtual scalar photon reabsorbed by ¢,. Quantum electrodynamics
in the Lorentz gauge thus lets us interpret the Coulomb interaction
between two fixed charges as resulting from the exchange of scalar
photons between them.

Note finally that the terms in g (or ¢3) of AE—that is, ek, (or e2,,))
—are gotten by taking the same term in ¢, (or ¢,) in the two matrix
elements of V. The Coulomb self-energy of a particle appears then as due
to the virtual emission and reabsorption of a scalar photon by this same
particle.

¢) Exact CALCULATION

Since the coupling Hamiltonian V is linear in @, and 4. it is in fact
possible to diagonalize exactly the total Hamiltonian H = H, + V. Con-
sider the part Hg of H relative to the scalar modes (¥ acts only on these
modes). It 1s written

H, = Jd3k H (k) (D.13)
with

H (k) = hw[~ ayk) afk) + A*(k) a(k) + A(k) a,(k) + ﬂ (D.14)
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A(k) being given according to (D.6) by

MK) = 5 /28 o Pk (D.15)

The principle for the diagonalization of the Hamiltonian H (k) for the
scalar mode k involves imposing a translation on a, and a so as to cause
the linear terms in g, and &, in (D.14) to vanish and to get a harmonic-
oscillator Hamiltonian.

For this we introduce the new operators b, and b,:

b(k) = a k) — Ak) (D.16.2)
byk) = a (k) — A¥(k). (D.16.b)

The commutation relation (C.18.b) gives for b, and b,
[b(K), b, (k)] = [a,(k), a,(K)] = — o(k — K) (D.17)

so that b, and b, can in fact be considered as annihilation and creation
operators (*). In addition, since
b b, =a,a, — A*a, — Ja, + A* A (D.18)

s Us

it 1s possible to rewrite H (k) in the form
H (k) = hw[—zs(k) b(k) + A*(k) A(k) + %] (D.19)
which is, to within a constant, a harmonic-oscillator Hamiltonian. Let |0
be the state defined by
h(k)|0> =0 (D.20)
so that
ak) |0y =4Kk10). (D.21)

The state |0) is then a coherent state of the mode ks, that is, an
eigenvector of a (k) with eigenvalue A(k). Using (D.20), {0) is an eigen-
state of H (k):

H(k)|0) = hw[ (k) Ak) + JIO> (D.22)
(*) Since b, and b, obey the same commutation relations as a, and a4, one can actually

find a transformation T, unitary in the new sense (that is, such that TT = TT = 1), which
transforms the operators a, and a, into b, and b, (see Exercise 4).
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with an eigenvalue Aw[3 + A*(k)A(k)]. One concludes that the exact shift
AE of the ground state of the field due to the presence of charges is the
sum over all the scalar modes of AwA*(k)A(k), so that, using (D.15),

pe(k) p(K)

e (D.23)

AE = Jd3k hwi*(k) A(k) = Jd3k

which coincides with (D.11). The result of the second-order perturbative
calculation for AE agrees with the exact value of this shift.

Remark

It is easy to get the other states and eigenvalues of H,. Starting with the
commutation relation (D.17) and from (D.20), one can show that

H[bK)]P |0y = ﬁw[p e z(k)} [h(k)]7105  (D.24)

The state [b,(k)]” |6) is then a new eigenstate of H_ at a distance phw above

5

the new ground state |0). All the levels of the harmonic oscillator associated
with the scalar mode k are then displaced together by the same amount AE.

3. Some Properties of the New Ground State of the Field

a) THe SUBSIDIARY CONDITION IN THE PRESENCE OF THE INTERACTION.
THE PHYSICAL CHARACTER OF THE NEW GROUND STATE

To see how it is possible to generalize (B.20) and (B.21), wh.ich
characterize the physical states for the free field, one begins by calculating
x,d,4" starting from the expansion (C.17) for 4, in a and a:

Ji . AN
Z'Cu A4 = J\d3k m < lka, + %) e‘k" + h.c. (D25)
" 0

Consider now at a given time f, the states [y) which are for all k
solutions of the equation

agk)

¢

[ika,(k)+ }|¢>:o VK . (D.26)

It follows from (D.25) that the mean value of the operator X,d, 4" in
these states is zero at 1,. It is possible on the other hand to express the
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velocity d, = [a,, H]/ih appearing in (D.26) by means of the equation of
motion for a, which is the quantum generalization of the equation of
motion (A.35") for the classical normal variable a,:
k) + i a(k) = ——— cp (k). (D.27)
2 g, hw

Putting (D.27) into (D.26) then gives, using (D.15) for A(k),
[a(k) — a(k) + AK)] |y > =0 Vk (D.28)

which reduces to (B.21) in the absence of sources (A = 0).

An important property of (D.28) is that its solutions are independent of
the time ¢,. In other words, the subspace of physical states selected by
(D.28) is stable over time; a physical state |{/) at ¢, remains a physical
state at all subsequent times. We will prove this important point in
§Ay.3.c by examining the temporal evolution of the operator a, — a, + A
which appears in (D.28). This property assures that ¥, d, 4* keeps a zero
mean value for all r and all ¢, and allows us to consider (D.28) as the
generalization of (B.21) in the presence of an interaction.

We return now to the new ground state of the field |0) defined in
(D.21). It is easy to see that |0> satisfies (D.28) and is therefore a physical
state. First, since the longitudinal modes are not excited by the fixed
charges

ak)|0> =0 Vk. (D.29)

It is sufficient then to use (D.29) and the definition (D.21) of 10) to see
that |O> truly satisfies (D.28).

b) THE MEAN VALUE OF THE SCALAR POTENTIAL IN THE NEW GROUND
STATE OF THE FIELD

Starting from the expansion of A (r) in the scalar modes, one gets
for the mean value (in the sense of the new metric) of A (r) in the new
state |0)

CO0]A4r)|0 > 1
4105 1 Jdak/ o
c010> c0]0> 2 g, w2 1)}

CO0la(k)|0> + ce. (D.30)
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which is then written, using (D.21),

CO| A0 7 .
AW ek — L w4 e .
c0]0 > J Tee @y Wt e (D.3D)

The requirement that p,(r) be real implies that A(k) = A*(—k), which, by
a change of k to —k in the integral (D.31), allows one to show that the
complex conjugate term duplicates the first term. Using (D.15), one then
gets for the mean value of U(r) = cA(r)

c0|U@|0> 1 p. (k)
—— = d3k = ek D.
C 0 | 0 D) (2 n)3/2 £ k2 € ( 32)

which is just the Fourier transform of p,(k)/e,k?, that is, the Coulomb
potential associated with the charge distribution p,(r). To see this it
suffices to note that on Fourier transformation the Poisson equation
AU + p,/¢e, = 0 gives U = p,/e k>

4. Conclusion and Generalization

We have shown that it is possible to transform the Hamiltonian of the
quantized field coupled to fixed charges so as to make explicit the
Coulomb interaction between charges. We have also proved that the (new)
mean value of the scalar potential in the perturbed ground state of the
field coincides with the Coulomb potential created by the charges.

Such a treatment can be extended to the case where the sources are
particles forming a dynamical system. We will see in Complement B, that
it is possible to apply a unitary transformation (in the new sense) to the
Hamiltonian of coupled Dirac and Maxwell fields which generalizes the
transformation studied here and which makes explicit the Coulomb inter-
action between the particles. Along with the subsidiary condition selecting
the physical states, such a transformation establishes a correspondence
between the two possible formulations of quantum electrodynamics exam-
ined in this book, that in the Lorentz gauge and that in the Coulomb
gauge.
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63, 681 (1950), and K. Bleuler, Helv. Phys. Acta., 23, 567 (1950).



408 Introduction to the Covariant Formulation Ayl

COMPLEMENT A,

AN ELEMENTARY INTRODUCTION TO THE THEORY
OF THE ELECTRON-POSITRON FIELD COUPLED TO
THE PHOTON FIELD IN THE LORENTZ GAUGE

The description of particles used in the preceding chapters is valid only
when the particles are moving at velocities small compared to the velocity
of light. Furthermore, the theoretical framework which has been estab-
lished does not allow a treatment of cases where the total number of
particles varies through pair creation and particle-antiparticle annihila-
tion. It also appears that matter and radiation are not treated in the same
way: a relativistic quantum field describes radiation with an arbitrary
number of elementary excitations, the photons, whereas we consider only
a fixed number of charged particles represented by nonrelativistic wave
functions.

The purpose of this complement is to show in a very elementary way
how matter, especially electrons and positrons, can be described by a
quantized relativistic field. We begin (§A,.1) with a brief review of the
Dirac equation treated as a one-electron relativistic wave equation (*). We
then quantize the wave function of this equation, following the usual
procedure for second quantization (§Ay.2) and thus get the quantized
Dirac field, whose elementary excitations describe electrons (e~) and
positrons (e*). Finally, we introduce (§Ay.3) the expression for the
Hamiltonian describing the interaction of the quantized Dirac and Maxwell
fields. This Hamiltonian is expressed in terms of the creation and annihila-
tion operators of electrons, positrons, and photons. It forms the starting
point for all calculations in quantum electrodynamics.

1. A Brief Review of the Dirac Equation
a) DIRAC MATRICES

A heuristic procedure to get a wave equation for a particle involves
starting from the dispersion relation E = f(p) between the energy £ and
the momentum p and making the substitution

E—»ih% p— — ik V. (1.2)

(*) The reader will find more detailed discussions in the books referred to at the end of
this complement.
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In the presence of an electromagnetic field described by the potentials A
and U, one uses the following substitutions:

ih;—r—nh(g—tqu — iV > — iV — gA  (1.b)
where g is the particle’s charge. This rule is related to the possibility of
locally changing the phase of the wave function (see Exercise 5).

If one seeks a first-order differential equation, like the Schrédinger
equation, but in which r and ¢ play symmetric roles as in relativistic
treatments, then one is naturally led to a linear relation in E and p of the
form

E = fmc* + ca-p )

where 8 and a are real and dimensionless. In addition, Equation (2) must
be compatible with the well-known relativistic dispersion relation

E* =m?c* + p* 2. (3)
The square of (2) gives

E>=m> B2+ me® Y (0, B+ Ba)p; + AN Y pipjoy o ()
i i

where i, j = x, y, z. Comparison with (3) leads to the following relations:

=1 (5.a)
% f + Po; =0 (5.b)
a0+ ooy =29, 5.0)

This shows clearly that 8 and « cannot be numbers. On the other hand,
one can find matrices of rank at least 4 which satisfy these equations. The
wave function v is then necessarily a spinor, with at least four compo-
nents, which implies the existence of internal degrees of freedom for the
particle, described by a, 8, in addition to its external degrees of freedom
described by r, p.

The Dirac equation corresponds to the four-dimensional realization of
Equations (5). One can check that the four Dirac matrices

1 0 0 1o
52(0 41) '“i=<ai o) ®)

in which 1 is the two-dimensional unit matrix and o, is one of the Pauli
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matrices
[0 1 (0 —i /1 0
== (1 0) % <i 0> = <o - 1) M
satisfy (5).
Let’s give finally a few relationships satisfied by the matrices (6) and

which will be used later. From the well-known commutation relations for
the Pauli matrices,

6,6, — 0; oi=2i;£ijk o, &)

(&% 1s the completely antisymmetric tensor), one gets the following
relations for the matrices a;:

o o — ooy =210) &y Gy 9.2)
x

. [ % 0
&, = <O Jk>- (9.b)

Joined with (5.¢), this equation gives

where

a oy = 0 + i; Eijk Gy, - (10)

If A and B are two vectors which do not act on the internal variables, the
following expression generalizes (10):

(@ A)(@- By =A-B +i6-(A x B). (11

b) THE DIRAC HAMILTONIAN. CHARGE AND CURRENT DENSITY

The Dirac equation describes the temporal evolution of the spinor
with components ¢, (A =1,2,3,4):

ih%np:%[,w. (12)

Following (1) and (2), 5, is written
Hy = Pmc* + ca - p (13)
for a free electron, and

Hy = Pmc® + ca- [p — gAWM] + qU(r) (14)
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for an electron in the presence of an electromagnetic field. Let  be the
transpose of ¢ (it is a row vector), and {* its adjoint. From Equation (12)
and its adjoint one can show that the densities

P = qU*m YD) = ¢ L VD Yu(r) (15.2)
J = qel )y ) = qe 3 ) oy (o) (15.b)

satisfy the continuity equation
gp+V-j:O. (16)

One interprets p and j as the charge and current densities respectively. It
is noticeable that Equations (15) and (16) retain the same form in the
presence of an electromagnetic field.

¢) CONNECTION WITH THE COVARIANT NOTATION

Instead of the matrices @, and 8 introduced above, the matrices y* are
used frequently to get a more symmetric form of the Dirac equation:

=8 (17.2)
y = Ba;. (17.b)

By multiplying (12) by 8/Ac, we can rewrite the equation so obtained in
the form

[Zw’” —%}wo (18)
"
in the case of a free electron, and

[Zl,}"D —%jllpz() (19.a)

i 13
with

D —¢ +id4

u n e

(19.b)

in the case of an electron in a field defined by the four-potential 4,.
Rather than the adjoint y* of y, one then uses a different quantlty
called the relativistic adjoint and defined by

b= 0. (20)

With this notation, Equations (15.a) and (15.b) can be reassembled in the
form of a current four-vector

7 = qap(r) 7 (r) 1)
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d) ENERGY SPECTRUM OF THE FREE PARTICLE

For a free electron, p and »¥, commute, so that they have a common
system of eigenvectors, the plane waves. For each eigenvalue p, 5, has
two eigenvalues

E,= +mc* +p*ct. (22)

The energy spectrum of ), is therefore made up of two continua, one
above mc? and the other below — mc?.

The form of the eigenstates is particularly simple for p = 0, since %),
then reduces to Bmc?. One finds two eigenvectors

1 0
0 vl )

Uy, = 0 Uy = 0 with eigenvalue +mc (23.a)
0 0

and two others

0 0
0 0 . . 2

Uoy = ) fo- = with eigenvalue —mc (23.b)
0 1

Thus an electron with momentum zero and energy mc? can exist in two
internally different states corresponding to the two states of a spin 3. This
result persists for states with a momentum p # 0. The corresponding
spinors have in general four nonzero components. Those relative to the
eigenvalue + |p%? + m%* are derived from the spinors (23.a) by the
transformation

6 PBa- g ip-r
T(p) = |cos 3" P sin 5 |exp Ph (24.a)
4
6 = arctan —. (24.b)
mc

We denote these by u,(r). To simplify the notation, the index p desig-
nates collectively the three components of p and the + or — spin
component. The spinors relative to the opposite eigenvalue are derived
from (23.b) by T(p) and denoted v, (r):

u(r) = T(p) g 0,0 = T(P) g - (25)
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Remark

The spinors u, and v, defined in (25) are normalized as plane waves, since the
transformation T(p) is unitary. In the covariant formulation, one uses other
spinors which are derived from u,, and y;, by a Lorentz transformation
which is not unitary, so that they have a different normalization.

¢) NEGATIVE-ENERGY STATES. HOLE THEORY

The existence of negative eigenvalues down to — oo for Hp poses a
problem of physical interpretation.

One can first try to think of the corresponding states as mathematical
solutions without physical significance and retain only the positive-energy
states to describe the electron. However, the interaction with the radiation
field couples the positive-energy states to the negative-energy states. An
electron initially in a positive-energy state can, by photon emission, fall
into a negative-energy state.

This difficulty led Dirac to imagine that all negative-energy states are
occupied. Since electrons are fermions, the Pauli exclusion principle then
prevents the electrons with positive energy from falling into the already
occupied negative-energy states. The stability of the positive-energy states
is then reestablished. In addition, this point of view suggests new ideas.
The absence of an electron with negative energy E, charge ¢, momentum
p. and spin p is equivalent to the presence of a particle with positive
energy — E, charge — ¢, momentum —p, and spin —p. Such a particle is
nothing else than the positron, the electron antiparticle, which appears
then as a hole in the “sea” of electrons occupying the continuum of
negative-energy states. Other predictions flow directly. Through photon
absorption, a negative-energy electron can be promoted into a positive-
energy state, leaving a hole in the negative-energy continuum. Such a
process corresponds to electron—positron (e e ) pair formation. The
inverse process, pair annihilation, is interpreted as the recombination of
an electron and a hole.

The preceding considerations show clearly that the Dirac equation
cannot describe coherently a single relativistic particle. In relativity, mass
is a form of energy and particles can be created or destroyed. The ad hoc
approach of Dirac is actually one way of meeting this requirement with
the introduction of electrons preexisting in the negative-energy states. To
avoid the introduction of these not very physical electrons, it is preferable
to quantize the Dirac wave function (r) according to the second-quanti-
zation procedure. The excitations of the quantized field ¥(r) then allow
the description of an arbitrary number of particles and antiparticles.
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2. Quantization of the Dirac Field

a) SECOND QUANTIZATION

We will follow the general procedure also used in nonrelativistic
quantum mechanics to describe a set of identical fermions.

We begin by expanding the Dirac wave function y/(r) in an orthonor-
mal basis. Such a basis can be, for example, the plane-wave basis (25)
formed by the eigenstates of »#,, and p:

() =3 [v, u(r) + 5 v5(0]. (26)

The index p designates the set of quantum numbers (—E, —p, —p)
opposite to those designated by p. As we have seen in the subsection
above, a hole with wave function v, describes, in the Dirac approach, a
positron with quantum numbers p.

The wave function y/(r) is then quantized by replacing the coefficients
Y, and y; of (26) with the operators ¢, and ¢; annihilating an electron in
the corresponding state:

¥(r) =) [, u,(r) + c;r5n)]. 27

Since electrons are fermions, anticommutation relations are imposed on
these operators:

CAYAFE [e5. cglv = [c,, Gl = ey, Ct;]+ =0
ey 1, = 3, (gl =00 @9

These anticommutation relations are necessary to preserve the positive
character of the energy of the field (see the end of §A.2.b following).

Following the general line of §Ay.1.d, we now reinterpret the operators
¢; and c¢;. Annihilating an electron (—p, —E,, —p) is equivalent to
creating a positron (p, E,, p). We thus take

cg=0b, (29.2)
and inversely
g =b (29.b)

where b, and b," are the annihilation and creation operators of a positron
with momentum p, energy E,, and spin p. Finally, the quantized Dirac
field ¥(r) and its Hermitian conjugate ¥*(r) are given by

¥(r) = ) [c, u(r) + b vin)] (30.a)

p

Yr(r) = ) [ uk(r) + b, v5(r)] (30.b)
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¥ is the spinor whose components ¥, are the Hermitian conjugates of
those of ¥. The anticommutation relations of ¢ and b follow directly
from (28) and (29):

[C C]* = [bp’ q]+ = [c Cps p]+ [Cp’ P]+ =

[ p’ q]+ - 6 [b b+] = 5 . (31)

P’ 7a pq

One can also extract from (30) and (31) the anticommutation relations of
the field itself by utilizing the fact that the ensemble (u,, v;) forms a
complete basis of the wave-function space:

[IPA(T)« lPA'(rl)]+ = [‘I’I(r), lP;(r/)]+ =0
(2,06, Y1), = 6, 00 — 1) (32)

b) THE HAMILTONIAN OF THE QUANTIZED FIELD. ENERGY LEVELS

The mean value of the Dirac Hamiltonian in the state described by the
function ¥ (r) is

(Hp o = Jd3r J*(r) A, (r)

7‘ s
= Z Jd3r Yi(r) [ﬁu' me® + % I VJ Y0 . (33)
LA

The second-quantized Hamiltonian H, is gotten by replacing the wave
function (r) with the field ¥(r):

H, = Jd:"r P *(r) #, P(r)

= Jd"’r ¥+ (r) [[fmcz + Li(— o - V} Y(r). (34)

Use of the expansions (30) and of the fact that u, and v, are the
eigenfunctions of ), with eigenvalues E, and — E, leads to the follow-
ing form for H:

Hy=YE, c;c,+Y(—E)b,br. (39)
p p

Now, from (26), b,b, =1 — b, b, so that

p P

H, = E, +ZE< c+2Eb+ : (36)

The physical interpretation of (36) is quite clear. The energy E, =
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Y ,(—E,) is the vacuum energy and is not directly observi®le. ¢, ¢, is the
number of electrons of energy E,, which contribute E,c;c, to the total
energy. The eigenvalues of ¢, ¢, can be only 0 and 1. This property,
established in Exercise 8 of Chapter II, is a consequence of the anticom-
mutation relations and justifies the Pauli exclusion principle. Likewise,
b, b, is the number of positrons with energy E,, which contribute in a
similar fashion to the total energy with a positive sign. It is notable that if
one had imposed commutation rather than anticommutation relations on
b, and bp*, the — sign in (35) would have persisted in (36) and the total
energy would have been able to become infinitely negative. The anticom-
mutation relations are thus necessary to prevent such an unphysical
situation.

Remarks

(i) The vacuum energy E; has no true physical significance. One could remove
it by defining /), in a more symmetric way between particles and antiparticles.

(ii) In the presence of an external field, it is necessary to replace, in the
equation (34) for H,, the operator 5, by the expression (14) rather than (13).

To classify the energy levels of the Dirac field, it is interesting to
introduce the total charge

Q=qYcyc,—qy b b,. (37

p P

The importance of this quantity is due to the fact that it is conserved
even in the presence of an interaction with the electromagnetic field.

The lowest energy levels of the field are illustrated in Figure 1. The

Energy
Dy
l‘i
]
3o b
2 m¢ - _ >,
2e ~
me?
le
Vacuum
0 L 1 i 1 1
— 24 -9 0 q 2g @

Figure 1. The lowest states of the quantized Dirac field.
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vacuum has energy E,, which we take as the origin, and the corresponding
value of Q is 0. It is the ground state of the field. The lowest excited
states, characterized by Q = +¢ and Q = —gq, form two continua begin-
ning at £ = mc? and stretching to + co. These are the one-electron and
one-positron states respectively. Three double continua begin at E = 2mc?
with Q = 24,0, —2¢q, describing respectively two electrons, an
electron—positron pair, and two positrons. One gets next the three-particle
states: some with charge +g¢ (above the one-electron states in Figure 1),
others with charge 3¢, and so on.

The nonrelativistic formalism used in the foregoing chapters allows us
to describe processes whose development occurs entirely inside one of the
manifolds we have described. In the present relativistic theory, transitions
between different manifolds with the same value of Q (vertical transitions
in Figure 1) can take place, as we shall see in §A,.3 by studying the
coupling Hamiltonian with the radiation field.

¢) TEMPORAL AND SPATIAL TRANSLATIONS

To conclude this section devoted to the quantization of the Dirac field,
we will show that the Hamiltonian H,, and the momentum operator P,
whose expression we will give, are the generators of the temporal and
spatial translations of the field, as for all quantized free systems.

For H,,, this property is evident, since the Heisenberg equation for the
field operator is written

[H,2(r, )] = hT

lC‘t)

” Y(r, 1) (38)

>

which integrates to
i

exp(hi H,, r) Y(r, 1) exp( 7 Hy, r) =Yt +71). (39

The momentum operator of the field, P, is gotten via a method identical
with that which we used for H/, (see also Exercise 6):

P= Jd%’ ¥ *(r) [?VEP(r’)J. (40)
We take the commutator with ¥,(r),
[P, ¥,0] =2 Jd%’ { Vi) [’% V%I(r")} W) —
T

— 0 () [’%V%(r')}} (@)
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,\

¥,(r) anticommutes with ¥, (r') and therefore with V¥, .(r"). By transpos-
ing ¥, to the left in the first term, one gets the anticommutator of ¥y (r)
and ¥,(r), which is equal to 8(r — r')8,,. Following integration over r’,
(41) becomes

[P, ¥,0] = — 2y @)

P is thus the generator of the spatial translations

exp(— hiP . a> ¥(r) exp(hip : a> = ¥(r +a). (43)

Note that (38) and (42) can be condensed into a single expression by
taking P® = Hp/c:

[PLY(0)] = ?Z gv e P(v), x=(cr). (44)

In a more elaborate approach to quantization, this fundamental relation-
ship, which we have proven here starting from the anticommutation
relations for the field, is instead postulated, so that the translations are
represented by a unitary transformation of the field operators generated
by P*. The use of anticommutation relations for the fields is one of the
ways to meet this requirement. The other involves using commutation
relations, but it leads to an energy unbounded below and must therefore
be rejected.

3. The Interacting Dirac and Maxwell Fields

a) THE HAMILTONIAN OF THE TOTAL SYSTEM.
THE INTERACTION HAMILTONIAN

In this chapter we have studied the quantized Maxwell field in the
Lorentz gauge in the presence of external sources j.(r,¢) and p,(r, ?),
whose dynamics are imposed. The free-field Hamiltonian Hy is given by
(C.19) or (C.22). The Hamiltonian for the interaction with the sources is
written [see (A.29) and (A.8)]

H, - jdsrz/w(n 0 AME) = szr[— L 0 - A + epu(n ) AD].
(45)

On the other hand, the Hamiltonian of the Dirac field, in the presence
of external electric and magnetic fields whose dynamics are imposed, is
gotten by using in (34) the expression (14) for 5, rather than (13). This
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amounts to adding to the Hamiltonian H,, of the free field the following
term:

H, = Jd3r P [— cqa s Ar, 1) + qU(r, 0] ¥(r, 1)

= J r[— j(r) - A, 1) + p(r) U r, 0] (46)

where the density of charge and the density of current operators are the
analogues of (15.a) and (15.b) in second quantization:

p(r) = q¥ *(r) ¥(r) (47.a)

it = qc? T(r)a¥(r). (47.b)

When each of the two systems, radiation field and matter field, has its

proper dynamics, it seems natural to generalize (45) or (46) by replacing

the external variables j (r, t), p,(r, 1), A (r, t), and U,(r, t)/c with the

quantum operators j(r), p(r), A(r), and A (r). One then gets for the

Hamiltonian of the two interacting quantized fields the following expres-

sion, which can be justified more precisely starting from the Lagrangian
formalism (see Exercise 6):

H=Hy+ Hy + H, (48)

In (48), H, is the Hamiltonian (36) of the free particles (we omit the
constant E,),

ZEC ¢, +ZE b} b (49)

Hy is the proper Hamiltonian of the field expanded into transverse,
longitudinal, and temporal modes,

Hg —J &k Y hw[al(k)a(k)+ }

A=¢ge'l

+ Jd3k ha)[— a/k) a(k) + %J (50)

and H, is the interaction Hamiltonian

- jd%[_ §(r) = A(r) + ep(r) A(n)]. (Sb
This last operator is linear in ¢ and a for the photons, and involves
products such as c,c,, b,b,;, ¢, b,;, and b, for the particles. The

interaction thus changes the number of photons by 1, and the number of
particles by O (terms in ¢, c,, and b,b,’) or by 2 (the products ¢, b, and
b,c, create and destroy electron- posnron pairs respectively).

With slight technical changes, such as the use of products in the normal
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order, (48) is the basic Hamiltonian for calculating any process in quan-
tum electrodynamics.

b) HEISENBERG EQUATIONS FOR THE FIELDS

As we have not derived (48) from first principles, it is interesting to
study the Heisenberg equations for the quantized fields which can be
derived from this Hamiltonian.

For the electromagnetic field, we determine the equation of motion of
the operator a,(k):

a,0) = 7 [4,k). H]

1 1
= = [a,(0), He] + 57 [a,00. H,]. (52)

The first term gives simply —iwa,. In the second term, it is necessary to
replace H, by its expression (51), in which A(r) and A4 (r) are expanded as
functions of the operators a,(k’) and a,(k’) [Equation (C.17) of this
chapter]. Only the commutator [a,(k), a,(k’)] is nonzero, being
—8,,8(k — K’). The integral over r in (51) for H, projects the four-vector
Jj* = (cp,j) on the mode k:

@m:—mqm+—l—wm (53)
&g hw
where
. ] .
k — — d3 : - ik.r 54
PALY) \/(51:)3J rjfr)e (59)

Equation (53) is similar to Equations (A.33") and (A.35), which are
themselves equivalent to Maxwell’s equations in the Lorentz gauge. Equa-
tion (53) is thus the correct equation of motion for the quantized fields in
the subspace of states satisfying the subsidiary Lorentz condition (which
will be made more precise in §A ,.3.c below). Note also that the source 4,
is here an operator in particle space and not a c-number.

For the Dirac field, the Heisenberg equation is

() = [Pr), H]
= [v{/(r)’ Hy + HI]

= [W(r), jd3r’ YY) { Ay + qedlr) — gea - A(r)) } 'P(r’)}

(55
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By using the anticommutation relations in a manner analogous to that for
passing from (41) to (42), one gets

in¥(r) = {[fmc2 + qcA(r) + ca - (? V- qA(r))} Y(r). (56)

This equation is like the Dirac equation in the presence of an electromag-
netic field described by the potentials 4 (r) and A(r). But these two
quantities are now Maxwell field operators, ¥ itself being a Dirac field
operator. Starting from (56), one can derive easily the equation of continu-
ity satisfied by the densities p and j defined in (47.a) and (47.b):

p(r) + V- jr) =0 (57.2)
or again in reciprocal space,

pk) + ik - j(k) = 0. (57.b)

¢) THE FORM OF THE SUBSIDIARY CONDITION IN THE PRESENCE
OF INTERACTION

In the case of the free field, we have shown that there are physical state
vectors |x) such that the Lorentz condition

(1Y ed*mnly>=0 (38)

is satisfied on the average for all r and ¢ For this, we have used the
expansion of the free field in traveling plane waves (B.9) to identify the
spatial and temporal Fourier components of X, d,A* and to cancel their
mean value by the condition (B.21) expressed for all values of k. We have
thus explicitly used the simple temporal evolution of the operators a and
a” for the free field.

In the presence of an interaction, the evolution of the fields in the
Heisenberg representation is no longer simple, and the identification of
the Fourier components of given frequency requires complete knowledge
of the evolution of the interacting systems (matter field + electromagnetic
field). Quite happily, even though the field 4, has a complex evolution,
the operator

A1) = Y 8,44r, 1) (59)

which appears in (58) behaves simply. To see this, it suffices to refer to
Equation (A.17) satisfied by the corresponding classical variable. This
equation results on one hand from the equation of motion of 4,, and on
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the other from the conservation of charge. These equations remain true for
operators in quantum theory, and A then satisfies the equation

OA(r, ) =0. (60)
In reciprocal space the spatial Fourier transform A(k) of A(r) satisfies
AK) = — 0* AK)  (w = ck) (61)

so that A(k) has a simple evolution, characterized by the two exponentials
e =+ iwt‘

We will identify more precisely the parts of A(k) associated with each
of the frequencies +w. With the help of (C.17), A(k) is expressed as a

function of the operators a and a:

A(k) = /;L'w [ik - a(k) + ik - @(— k) + lcc'zs(k) + %35(— k)}- (62)
0

The velocity d, can be replaced by its value given by (53), and ik - a by
ika,. We will show that the operator A‘*’(k) defined by

A(k) = w

i [ik - a(k) + %&s(k)}

[ h 1w c
= m 7[”1(1() —aJk) + mp(k):' (63)

evolves over time under the action of the total Hamiltonian H like e~ 1¢",
For this, we will calculate its derivative A‘*’(k). It involves 4,, d,, and p,
whose values are given in (53) and (57.b). One then gets

: R ik jk)
Ak) = —[— iwa(k) + —E= + iwa, k) —
25w ¢ : 2 &, ho ’
0

icp(k) ick - (k)

- = —iwA™M(k) (64
V2 & ho a)\/maﬂ (o (69

which demonstrates the desired property.

Likewise
ATHk) = h ik-E(—k)+l§(—k)
2eyw ¢
h  —iw|_ _ c
= — | g(— k) —a(— k) + ————=p (- k
Terw [m e T ldl )]
(65)

evolves as e "¢,



A3 Theory of the Electron-Positron Field 423

Thus, the condition (58) for all r and ¢ reduces to two initial conditions
to be satisfied for all k:

Cxla(k) — a(k) + ————p(k) [ 2> = 0 (66.2)
w\/2 ey how

Crlafk) —ak) + -p (k)| x>=0. (66.b)

¢
/2 ¢y hw

These conditions are realized for the states of the subspace defined by

[a(k) — a(k) + AK)] x> =0 Vk (67)

where

k) = —————p(k) (68)

w./2 gy hw

which makes up the subspace of physical states. This equation generalizes
Equations (B.21) and (D.28), discussed in this chapter for the free field or
the field in the presence of external sources.

GENERAL REFERENCES AND ADDITIONAL READING

For the Dirac equation see for example Berestetski, Lifshitz, and Pitayevski
(Chapter 4), Bjorken and Drell (Chapters 1 to 7), Messiah (Chapter XX).

For the quantization of the Dirac field and relativistic quantum electro-
dynamics see for example Berestetski, Lifshitz, and Pitayevski; Bogoliubov
and Shirkov; Feynman; Heitler; Itzykson and Zuber; Jauch and Rohrlich;
Schweber.
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COMPLEMENT B,

JUSTIFICATION OF THE NONRELATIVISTIC THEORY
IN THE COULOMB GAUGE STARTING FROM
RELATIVISTIC QUANTUM ELECTRODYNAMICS

In Complement A, above we have given the Hamiltonian describing
the dynamics of the coupled Dirac and Maxwell fields. This Hamiltonian
uses the Lorentz gauge for the electromagnetic field, with the result that
the Coulomb interaction between particles does not appear explicitly in
the Hamiltonian. In addition, the number of positrons and electrons is not a
constant of the motion and can vary over time. Such a theoretical frame-
work seems quite removed from that established in the earlier chapters.
There we considered particles, fixed in number, described by Schrédinger
wave functions (or by two-component Pauli spinors), and used for the
radiation field the Coulomb gauge, or gauges derived from it, which
introduce the Coulomb interaction explicitly in the particle Hamiltonian. The
purpose of this complement is to tie these two treatments together and to
show how the nonrelativistic theory of Chapters I to IV can be justified
starting from relativistic quantum electrodynamics in the Lorentz gauge,
which we have broadly sketched in Complement A,,.

We are going to do this in two stages. While retaining the quantized
Dirac field description of the particles, we begin by applying to the
Hamiltonian of Complement A,, a transformation which is unitary with
respect to the new norm and which yields the Coulomb interaction
between particles. If, in addition, one uses the subsidiary condition
characterizing the subspace of physical states, such a transformation
amounts to passing from the Lorentz gauge to the Coulomb gauge
(§By.1) (*). In the nonrelativistic limit, the coupling between states with
different numbers of particles (electrons + positrons) is weak and can be
treated as a perturbation. We will show then (§B,.2) that, for a given
number of particles, the dynamics of the system particles + photons is
equivalent to those described by the nonrelativistic Hamiltonians of the
preceding chapters.

(*) A procedure of this type is followed in K. Haller and R. B. Sohn, Phys. Rev. A, 20,
1541 (1979).
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1. Transition from the Lorentz Gauge to the Coulomb Gauge in
Relativistic Quantum Electrodynamics

a) TRANSFORMATION ON THE SCALAR PHOTONS YIELDING THE COULOMB
INTERACTION

We start with the Hamiltonian (48) of Complement A, which we
rewrite in the form

H=H,+ Hg +Hy + Hi + HF + HL + H} ()

separating, in the radiation Hamiltonian Hj and in the interaction Hamil-
tonian H;, the contributions of the transverse, longitudinal, and scalar
photons (labeled by the superscripts 7, L, and S respectively).

Consider first the part of H involving the scalar photons. It reduces to
HR + H7. By using (50) and (51) of Complement Ay, as well as the
expansion of the scalar potential A,(r) in a, and a, [see (C.17) in this
chapter], we get

Hi + HY = Jd3k h(u[— (k) a(k) + 2%(k) a,(k) + A(k) a k) + %]

@

A(k)=ﬁ /25 wp( )—— /2‘g w(2n)3 d'P(r)e k(3
« 0 0

has already been introduced in Complement A, [see (68)]. As in §D.2.¢ of
Chapter V, we can then rewrite the bracket of (2) in the form

where

= [a(k) — 2*(0)] [a(k) — AK)] + A*(k) A(k) +% : 4

The particle operators A*(k) and A(k) commute with the radiation opera-
tors a (k) and a (k) and also among themselves, since they depend only
on p(r) according to (3), and one can show (see Exercise 7) that p(r)
commutes with p(r). It follows that the operators @, — A* and a, — A
satisfy the same commutation relations as a, and a,. There must then be
a “translation operator” T transforming a, — A* into @, and a, — A into
a

T[ak) — K] T = a(k) (5.2)
Tlak) — AK] T~' = ay (k) (5.b)
and generalizing the translation operators introduced in §C.4.d of Chapter
IIT for the operators a and a*, which are adjoints of each other with
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respect to the usual scalar product. It is indeed possible to prove (see
Exercise 4) that the operator

T= CXP{ jd:’k [Ak) a (k) — 2%(k) a(k)] } (6)
which is unitary with respect to the new scalar product
TT=TT =1 o)

satisfies the relations (5). Using (2), (4), (5), and (3), one then gets
T(Hy + H)T = Jd% hw[— a,(k) a(k) + %} + [ d3k hoi*(k) i(k)

*(k
- HS +Jd3k%. (®)

The last term of (8) is just the Coulomb energy of the system of charges
[see Equations (B.32) and (B.33) of Chapter IJ,

VC L= Jd3kM — de%, d3r/ p(l‘) p(l")

2e,k? 8me,|r— 1|

- L‘gojjd%d%’ P Y0 P ) W) ©)

8n [r—1r'|

Therefore the transformation 7 has allowed us to eliminate the interac-
tion term H; with the scalar photons and to replace it by the Coulomb
interaction

THy + H)T = H} + Ve - (10)

Remark

In the new representation, the scalar potential A (r) is represented by the
operator

Ar) = TA(M) T =

h ) )
A + | &k | —————— [ A ker 4 j*(k) e 7], 11
{0 [ \/2 go w(2 m)? BUL (k) e ] (an

We have used the expansion of 4 (r) in a, and a, [see Equation (C.17)] as well
as Equations (5). The last term of (11) is easily found starting from (3) for A(k).
It coincides with the scalar potential A7 created by the charge density p(r) of
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the particles

AF(r) = % [d%'—ﬂ— (12)

4mey|r—r'|
Substituting (12) in (11), we get
A1) = A(r) + 4/(). (13)

It is clear from (13) that the mathematical operator 4,(r) given by Equatior
(C.17), which describes in the initial representation the total scalar potential,
now describes, in the new representation, the physical variable 4/ (r) — A7(r) =
A(r) — [AF(M)], since A7 commutes with T and is thus equal to (A7Y. In the
new representation, the operator A4 (r) thus describes the difference between the
total scalar potential and the scalar potential created by the particles.

b) EFFECT OF THE TRANSFORMATION ON THE OTHER TERMS OF THE
HAMILTONIAN IN THE LORENTZ GAUGE

To study how the other terms of (1) are transformed by T, we will
rewrite 7 by substituting in (6) the expression (3) for A(k). This gives

T = exp{ — ih—cjd% p(r) S(r)} (14)

— 143 h a(K) e, @ —ik.r}
S = Jd k\/ 2e,0(2 n)3{ o o 19

is a quantum field which acts only on the scalar photons and which is
self-commuting:

where

[S(r), SGr)] =0 (16)

T acts on the particles, since the density p(r) appears in (14). The
simplicity of the commutation relations for p(r) = ¢ ¥ *(r)¥(r) with the
Dirac operators ¥,(r) and ¥, (r) and the property (16) permit us to find
simply the transforms of ¥, and ¥," by T (see Exercise 7). Since 7! = T
from (7), Equation (6) of Exercise 7 can be written

TY (T = exp[ighfS(r)} Y (r) (17.2)

TY ()T

cxplj— ighES(r)J P H(r). (17.b)
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We will return now to the Hamiltonian (1). Since H} and Hj depend
only on the transverse and longitudinal field variables on which T does

not act,
T(HY + HHT = HY + H}. (18)

One can rewrite H + H} in the form

Hf +Hf = —¢q jd”Z Y [, s AD] ) (19)
A A
where A is the transverse and longitudinal vector potential, so that

TH! + HHT = — qu"’rZ Y
A

A,
ex‘p[ -i% S(r)} () Tle@),, - AD]T exp[i & S(r)} Y,.(r). (20)

Since T commutes with A, and S(r) commutes with A as well as with ¥,
and ¥,, the integral of (20) reduces to that of (19), so that
T(Hf + HN)T = H + H. 1)

An analogous treatment can be applied to the term in Bmc? of H), [see
(34) of Complement Ay]:

T{ Jd% ¥ *(r) fmc? ¥(r) }T = J d&r¥ () pmct P(r).  (22)
It only remains to study the term in (%c/1)a - V of Hp:

T{ he Jd% P (r)a - [VP(D)] }—f -

i

= -ri—( jd3r exp[— i%CS(r)} P (r)a { V[exp[i %; S(r)} W(r)}}

= ? Jd% Pr(r)a - VI(r) + g Jd% Yo [VS(D)] P(r). (23)
Regrouping (22) and (23) gives

TH, T = Hj, + gc* Jd3r P (rya - [VS(] P(r). (29
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Finally, using (10), (18), (21), and (24), we have shown that

THT = H, + Hf + HT + H}F + Hi + H}® (25)
where

Hp,=Hpy + Veou (26)

acts only on the particle variables and where

HIS = HE + ¢ fd"” Pr(ma - [VSH] ¥ =

= — qc JdBr ¥ (r)a - [A(r) — cVS(n)] ¥(r) 27

acts on the particle variables and on those of the longitudinal and scalar
photons. Finally one can reexpress A as a function of g, and a,, and VS
as a function of a_ and a,, starting from (15). We get

Ay(r) — ¢ VS(r) =

= Jd% lz%—afzz—;tF {[a(k) — aK)]k e™" + [a(k) — a(k)]xe ™"}

(28)

—that is, on introducing the operators a,(k) and a,(k) defined in
Chapter V [Equation (C.33.a)],

: h ikor = —ik.r
A(r)—cVS(r)z—l\/EJd% /m[ad(k)lce"'—ad(k)xe k],

29

It appears then that in the new representation (that is, after the transfor-
mation T has been applied), the new Hamiltonian describing the interac-
tion with the longitudinal and scalar photons depends only on the
operators a, and a, We will see the importance of this below.

Remark

There is an analogy between the field S(r) defined in (15) and the field Z(r)
introduced in Chapter IV [Equation (B.63)]. For free fields in the Heisenberg
approach, S(r, r) is, to within a sign, the time integral of the transverse scalar
potential A (r, r), just as Z(r, t) is the time integral of the transverse vector
potential A | (r, t). Similarly, one can show that there is a certain analogy
between the transformation studied here and the Pauli- Fierz—Kramers trans-
formation mentioned in §B.4.d of Chapter IV. The Pauli-Fierz—Kramers
transformation tries to remove from the total transverse vector potential the
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transverse vector potential “bound” to the particles (*) in the same way as T
here removes the scalar potential “bound” to the particles (see the remark at
the end of §By.1.a above).

¢) SUBSIDIARY CONDITION. ABSENCE OF PHYSICAL EFFECTS OF THE SCALAR
AND LONGITUDINAL PHOTONS

We have seen in Complement A, that, in the initial representation in
Lorentz gauge, the physical states |x) must satisfy the condition

[a(k) — afk) + AK)][x> =0 vk (30)

where A(k) is given in (3). To find what becomes of this condition for the
transformed states

by >=Tlx> (31

we will multiply (30) on the left by T, insert 7T = 1 between the bracket
and |x), and use (5.b). This gives

[a(k) —a(k)]]l x> =0 Vk (32)

—that is, finally, in terms of the operators a, and a,,
{ a®)r>=0 (33.2)
Cx'lagk) =0 ' (33.b)

In the new representation, the subsidiary condition then has the same
form as for the free field [see Equation (C.37) of Chapter V and the
adjoint equation).

Equations (33), joined with the equation

[a,(k), a,(k)] = 0 (34)

which we have derived in Chapter V [Equation (C.42)], entail that the
interaction Hamiltonian H} introduced in the preceding subsection [see
(27) and (29)] does not contribute to the transition amplitude between an
initial physical state |x/) and a final physical state |x}), both obeying
Equations (33). To see this, it suffices to note that such an amplitude is a
sum of terms involving the matrix elements between |x/) and (x}| of a
product of interaction Hamiltonians in the interaction representation
H, (1)), H,(t,),... . Now, in the expression (25) for the new Hamiltonian,
the interaction Hamiltonian is HT + H'S. On the other hand, H is
given as a function of a_e™ ™ a, e, a, e“"’ a, e™', whereas, from (27)
and (29), H}S is expressed asa functlon of a e ' and a, e’ Since a,

(*) See for example, Cohen-Tannoudji, Dupont-Roc, and Grynberg, Complement By;.
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and a, commute with each other according to (34), as well as with all the
transverse photon operators a,, a,, a,, and a,, it is possible, as soon as
H/* appears in order 1 or higher, to transfer a,, to the extreme right or a,
to the extreme left in the product ﬁ,(zl)ﬁ,(12) --+ and then get a zero
transition amplitude using Equations (33). The only nonzero terms be-
tween physical states are then of order 0 in H}S. This shows that for all
physical calculations H/S can be ignored.

d) CONCLUSION: THE RELATIVISTIC QUANTUM ELECTRODYNAMICS
HAMILTONIAN IN THE COULOMB GAUGE

We have shown that H/* can be ignored in calculating the transition
amplitude between two physical states |x/) and Ix})- We will take then,
as initial states |x!), states which have no longitudinal and no scalar
photons. Such states satisfy Equation (33), since a,|0,0,) = 0. Since one
can ignore H/S in (25) and since none of the other terms of (25) can
create longitudinal or scalar photons, », and n_ remain zero over time and
H{ and H3 then reduce to constants in (25).

Finally, for all physical processes, it is possible to ignore completely all
the terms relative to longitudinal and scalar photons in (25) and retain
only the three terms related to the particles and the transverse field. We
find in this way, by combining the transformation T applied to the
Hamiltonian in Lorentz gauge and the subsidiary condition characterizing
the physical states, that the real independent degrees of freedom of the
field are the transverse degrees of freedom. The Hamiltonian

H=H, +Hg +Hf (35)
where
Hy, = jd% ¥ H(r) [ﬁmc'z Ll VW ¥(r) + ”dsrdar, p(r) p(r')
1 ) Emey | r—1'|
(36)
HY = Jd3k Z hw[a:(k)af(k) + %} (37
= J Er#ma- AL ¥ (38)
with

A(r) = Jd3k Eze: /W}Zzﬁ [a(k)ee™ +af(k)ee "] (39)

is the relativistic quantum electrodynamic Hamiltonian in Coulomb gauge.
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2. The Nonrelativistic Limit in Coulomb Gauge: Justification of the Pauli
Hamiltonian for the Particles (*)

a) THE DOMINANT TERM H,, OF THE HAMILTONIAN IN THE
NONRELATIVISTIC LIMIT: REST MASS ENERGY OF THE PARTICLES

The Hamiltonian (35) is strictly equivalent to the relativistic Hamilto-
nian (48) of Complement A ;. The particles can have a kinetic energy large
with respect to mc?, and the photon frequencies are subject to no
restriction.

We will turn our attention now to states describing nonrelativistic situa-
tions (slow particles, photon frequency small compared to mc?). The
principal term of the Hamiltonian is then the rest mass energy of
the particles, which is very large compared to their kinetic energy or to the
photon energy. In the Hamiltonian (35), it is described by the term

Hy, = Jd% P *(r) fmc? P(r) (40)

of (36). We are going to treat H, as a first approximation of H and
examine its energy levels. The rest of the Hamiltonian, which we denote V,
will then be treated as a perturbation. It involves the kinetic energy of the
particles and their interaction with the transverse field,

H, = Jd% ¥ (1) cat - [Li’v - qAL(r)il ¥(r) 41)
(A, is given by 39), as well as the Coulomb energy of the particles and
the proper Hamiltonian of the transverse field:
V=H, + Ve + Hyi . (42)
The total Hamiltonian is then written
H=H,+V. (43)

In complement A, we have used an expansion of the quantized Dirac
field in the basis of spinor functions adapted to the Hamiltonian
given by (13) of complement Ay. It is preferable here to make another

(*) This problem is also discussed by Cohen-Tannoudji (§6) and by I. Bialynicki-Birula in
Quantum Electrodynamics and Quantum Optics, A. O. Barut, ed., Plenum Press, New York,
1984, p. 63.
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expansion, better adapted to H,. For this, consider the spinor basis u{?(r)

and v{)(r), formed by the common eigenstates of the operators Smc?, o,
and (h/)V:

1 .
(O)p) — (0) pr
upa(r) - \/ZS ua exp(l h ) (44a)
1 .p°r
Oy = —— O L. 44.b
qu(r) \/F La exp(‘ }‘;l > ( )
with
1 0 0 0
o0 o _ |1 ©_ {9 o_ |9
u; ol u ol ot 11 o 0.(45)
0 0 0 1
The expansion of ¥(r) is then written (denoting po= —p, —0o)
V(1) = Y Cpp tig)(1) + By ti(r) (46)
po

where C,, (B,, respectively) is the destruction operator of a particle
(creation operator of an antiparticle) with momentum p and spin o. The
operators C,, and B, anticommute. Using a path analogous to that of
A,.2.b, one can put H; in the form

Hy = Ej + Y mc*[C,, Cy + By, B,,]. (47)

po

The operators C*C and B* B have 0 and 1 as eigenvalues, with the result
that up to the nonobservable constant Ej = Zpo(—mcz), the spectrum of
H, is a discrete spectrum made up of a set of integer multiples of mc?. If
one introduces the total charge

Q=% [qC.L Coo +(— 9) By, Bpa] (48)

then the diagram of energy levels of H,, classed according to the values of
0, has the shape given in Figure 1. In this figure, each of the levels has a
large degeneracy, since it is necessary to specify the momentum and spin
of the particles as well as the number of photons of the transverse field.
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p Energy
(mc?)
I — —_— —_— —
2 — — — —
{1 _— —_—
I | | . 1 1 1 -
0 =3 -2 -1 0 I 2 3 Q

Figure 1. Energy levels of the Hamiltonian H; describing the rest mass energy of
the particles of the quantized Dirac field.

It appears clearly in Equations (44) that the spinors u:&’ have only their
first two components nonzero, as is the case for the last two components
for U(O’ (this was not the case in Complement A, since the spinors «, and
v, have their four components nonzero for p # 0). In the expansion (46)
the operators C and B are then associated with the first two and last two
components of the field ¥(r) respectively. Taking account of the different
roles which these two types of operators play, it is useful to decompose
¥(r) into two spinors with two components each, @(r) and £ 7(r):

() - [ ;)f(’r))]. (49)

Their components @_(r) and 2;(r) (¢ = +1 or —1) are given as func-
tions of the operators C and B* by using the expression (44) for the
spinors u() and vf)):

1 .p-r
o (r)=) —C,, exp(x ——> (50.a)
%ﬁ po P15
QF(r) = Z — B exp<1 —h—'> (50.b)
One should note the presence of po= —p, —o in the expansion for £, (r).

The charge density

p(r) = ¢ ; P (r) ¥ y(r) (51
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can be put in the form
P(r) = gn(r) + (= q) n,(r) (52)
where

n() =Y 8, (r) 8,(r) (53.2)
n, (1) = Y.(-) Q00 2, (1)

=29, (0) Q) — n,. (53.b)

It decomposes into two densities of opposite sign associated with the new
fields @ and . The constant n,, which appears when one reestablishes
the normal order for the operators @, represents the charge density of the
vacuum. It is not a physical quantity and vanishes when one defines p
symmetrically with respect to the particles and antiparticles or defines the
observables directly in terms of products in the normal order.

b) THE EFFECTIVE HAMILTONIAN INSIDE A MANIFOLD

We will now return to the total Hamiltonian (43). The supplementary
term V, describing the kinetic energy of the particles, their coupling to the
transverse field, and the Hamiltonian of the transverse field modifies the
energy diagram of Figure 1. Insofar as the manifolds are well separated
and we consider situations characterized by small values of V, it is
possible to evaluate the effect of ¥ with perturbation theory. To this end,
we must find its matrix elements in the basis of eigenstates of H,,.

We start from (42) for V' and consider H{ first. It is clear that HI
commutes with H; and Q, and thus has matrix elements only within each
of the manifolds in Figure 1.

The operator V., can be rewritten as a function of the densities n,
and n »

VC | = q_z J‘J‘ d3r d3r/ [ne(r) B np(r)] [”e(r/) - np(r,)] ] (54)
o B meg

Ir — |

The densities #,(r) and n »(r) commute with 7 (r') and n (1) [the proof is
the same as that given in Exercise 7 for p(r)]. They also commute with the
particle numbers N, and N,, which are the integrals over all space of
the preceding densities. Since H; and Q are functions of N, and N,, they
commute with V¢, which thus has no matrix elements between different
manifolds.
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As for H,, its expression as a function of @ and £ is written using (6)
of Complement A4, for the matrices a:

H =H " +H ~ (55

where
H1++ _ Z J‘dBr d’;(l‘) c{aole|a )" [?V — qAJ_(l')j| Q;(r) (56.a)
H ==Y jd3r Qmcolelad )" [?V - qu(r)} P,(r). (56.b)

In these expressions, {o|o|o’) represent the matrix elements of Pauli
matrices between the eigenstates |o) and |6’y of o,. By using the expan-
sions (50) for @ and @7, the terms H,;"* and H, ~ can be put in the form
of discrete sums of matrix elements of the operator

U =co-[p— g4, (] (57)

between the states |p, o) and |p’, o’) of Pauli particles:

Hy* =Y Y Chdpol%|p o) B =

po po’

=Y Y CL<polu|p ) By, (58.2)

pe po

Hl__ :Z ZB,T?<I)’0JI%IPU>CW=

po po’

=Y Y B, {pd|Ulps)C,. (58.b)

po po’

In this form, it is clear that H;"" augments and H; ~ diminishes the
number of electrons and positrons by 1. Thus, H" and H; ~ have
nonzero matrix elements between manifolds whose energy differs by 2mc?
and which correspond to the same value of Q.

In our nonrelativistic approximation of the energy states of the system,
we will limit ourselves to terms of order 0 in 1 /c. To this end, it suffices to
calculate the effect of H} and V., to first order in each manifold. Insofar
as they are both diagonal with respect to the manifolds, their effect within
the manifolds is described by the operators themselves.

Because of the presence of the factor ¢, H, is larger by one order of
magnitude. It is necessary to examine its effect up to second order in
perturbation theory in order to get terms of order 0 in 1/c. Its effect in
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first order is zero, since H, is purely nondiagonal. To second order, the
energy levels in a manifold are gotten by diagonalizing the effective
Hamiltonian A® derived from second-order perturbation theory. From
the selection rules for H,, and because of the simplicity of the spectrum of

H,,, the energy denominators in the second-order terms are simply +2mc”.
The expression for A is made up of two terms:

]

2) __ + +
A4 = H| —
— 2 mc

++

+ H ™

—2mCZ[H*+H 1. (59)

By using (58) for H{'* and H; ~, one finds for the commutator an
expression of the form

¢ = {Z Clu;B' ., Y B U C,}. (60)
qr st

The indices g, r, s, ¢ represent quantum numbers of the type p, o, and
indices with bars above represent the opposite quantum numbers. The
anticommutation relations of the operators B and C lead to

a

S 4, %,C, B B,C, — B,C,C, B")

qrst

Z /Z/tﬁ /Z/ft [(C‘; Cr) (Br+ BS) - (_ Cq+ Cr + (5qr) (_ Br+ B,\ + (Srs)]

qrst
(61)

Using the closure relation for the states |p. o), one can put % in the form

€ =3 CIUY, C, + Y B (U Z(V/ Dy - (62)

qt

To calculate the square of the operator = o - [p — gA(r)] we will use the
properties of the Pauli matrices o, [Equation (8) of complement A, and
the anticommutation relation 6,6, + 0,0, = 23, ]. This gives

W2

pEa Z |j(5ij + i%*’m “k] [pi — qAm] [p; — q4,0)]
ij B
=[p - 9gA (D] — g 2}( ik ol p; Afr) + Ai(r)pj]
ij
=[p—gA (D) —ig) e Oxl pie ALT)]
ik

={p— ¢A (D]* — ¢h o - B(r) (63)
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where B(r) = V X A(r) is the magnetic radiation field. The expression for
A® can then be written in the form of a sum of an electronic operator A,
a positron operator A'”, and a constant which we will henceforth neglect:

2 2 2 4
A 2 == Aé(, ) + A; ) (6 )
Where

[P A0 g

(2): C*]/ 7 '
4 ; wo (P 0’| 2m 2m

p'o’

o - B(r)|po) C,, (65)

and we have an expression of the same type for A

Finally, to order 0 in 1/c, the new energy levels of the total Hamilto-
nian H are identical, to within constant terms and for “nonrelativistic”
states of the system, to those of the effective Hamiltonian

Hye = me? Y Cp Cpp + AP + me* Y B, B, + A7 +
po po
+ VCoul + H};f + (66)

Remark

It is possible to get an expression for A‘pz’ lending itself to a simple physical
interpretation. Denote by ‘) the operator derived from % by changing g to

—q. and by |po), a spinor basis which differs from the basis |pos) by a phase
factor +i:

U = o [p + 4qAL(R)] (67)
lp£) =+ilpx). (68)

A simple calculation of the matrix elements shows that
paluip o> ={po|U|pa). (69)

An analogous expression for [#‘']? and % is immediate. The Hamiltonian
for the positrons, A‘pz’, is then written

”?
A(Zi — B_* (—) B
? ; "\2mer T

(p + in)Z ﬂo‘ .
2m 2m

=Y B« r’ B|s> B,. (70)

It has the same form as A7’ when g is replaced by — g, the operators C by B,
and the changes (68) are made on the spinor basis. This transformation is
actually a special case of the general charge conjugation transformation (*).

(*) See for example Berestetski, Lifschitz, and Pitayevski. §§23 and 26.
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¢) DiscussioN

Consider the states containing only electrons. H ; then reduces to

(e) _ 2 +
Hi =Y me? Gyt Co +

po

+ I p—([A (r)z h
L - L OF g o BN |po) G, +

2m 2m
pa’
2 ,
7 3 g3 n,(r) n,(r) r
+8nsoffd'd’ |r__rr|+HR‘ (71

By construction, H'{ is block diagonal, each block being relative to a
manifold having a given number of electrons N,. Equation (71) coincides
in fact with the form taken in second quantization by the nonrelativistic
Hamiltonian describing an ensemble of electrons coupled to the radiation
field. More precisely, the matrix elements of (71) between two states
containing the same number of electrons N and labeled by the occupation
numbers (0 or 1) of the states po coincide with those of the following
N-electron Hamiltonian:

N 1 N f
A= Nm + Y [, - gAY o B, +

2= 2 m

I
+Z;8q ——— y H] (7))

2
ey |r1 — l';al

evaluated between two states formed by the antisymmetrized products of
N two-component spinors relative to the occupied states po.

The Hamiltonian (72) agrees with that introduced in Chapter III. The
various terms of (72) describe respectively the rest mass energy of the N
electrons, their nonrelativistic kinetic energy, the coupling of the spin
magnetic moments of the electrons with the magnetic radiation field, the
Coulomb energy of the N electrons, and the energy of the quantized
transverse field. We have then justified. starting with relativistic quantum
electrodynamics, the nonrelativistic theory in Coulomb gauge which has
been the basis of most of this book. The advantage of such a treatment is
that it introduces naturally the electron spin and the associated spin
magnetic moment

_ .4 he
M, =253 (73)

corresponding to a factor g = 2 {see (D.7) of Chapter III] as well as the
Fermi—Dirac statistics which electrons obey. Actually, the anticommuta-
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tion relations for the operators C* and C of (71) are a consequence of the
anticommutation relations for the quantized Dirac field, which result from
the positive-energy requirement (see §A . 2.5). We mention finally that it
is possible to calculate the higher-order terms of H/§’ in 1/c and thereby
get the expression for the first relativistic correctlons (mass—velocity
correction, spin—orbit interaction, Darwin term).
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COMPLEMENT C,,
EXERCISES

Exercise 1. Other covariant Lagrangians of the electromagnetic field.

Exercise 2. Annihilation and creation operators for scalar photons:
Can one interchange their meanings?

Exercise 3. Some properties of the indefinite metric.

Exercise 4. Translation operator for the creation and annihilation
operators of a scalar photon.

Exercise 5. Lagrangian of the Dirac field. The connection between
the phase of the Dirac field and the gauge of the electro-
magnetic field.

Exercise 6. The Lagrangian and Hamiltonian of the coupled Dirac
and Maxwell fields.

Exercise 7. Dirac field operators and charge density. A study of some
commutation relations.

1. OTHER COVARIANT LAGRANGIANS OF THE ELECTROMAGNETIC FIELD

The purpose of this exercise is to study Lagrangians which, as with the
Lagrangian used in this chapter, can serve as a departure point for a
covariant quantization of the electromagnetic field. One looks to a set of
Lagrangians Lg(A) = [d*rZR(N) depending on a real parameter A. The
Lagrangian density in real space, Fx(A), is written

. 1 oo A . z
Lr(2) = — 80(2';;_21:‘“.1:‘ +§(;(“A”> ~| (1

a) Are two Lagrangians corresponding to different values of A equiva-
lent?

b) Give Li(A) as a function of the transverse, longitudinal, and scalar
components of the four-vector potential in reciprocal space #.. &,, #,,
and &/, = U/c. Show that Lagrange’s equations relative to «7,, «7,, and
&/, can be written

)

9/; + el =0 (2.a)
,071 + ? o, — iw(s — l)(%/3 +im)) =0 (2.b)

A 40P+~ 1);—[(@%5 +iwe) = 0. 2.0)



442 Exercises Cy.1

Show that the equations relative to the longitudinal and scalar compo-
nents of the potential are those of two independent oscillators when
A=1

¢) Show that the equations (2) coincide with the Maxwell equations of
the free field for all A when the Lorentz condition is satisfied.

Solution

a) The difference between two Lagrangian densities corresponding to different values of
A is proportional to (L, H,‘A“)z, which is not a four-divergence. Thus these Lagrangians are
not equivalent. In particular, the standard Lagrangian (A = 0) and the Fermi Lagrangian
(A = 1) are not equivalent.

b) The Lagrangian Lg(A) is the integral in a reciprocal half space of the Lagrangian
density ZR(A):

Lp(s) = Fd-‘k Ll (3.a)

where E_’R(A) is gotten from (1) and (A.7) defining F,,:

L) = go[(.qi + k%) (o * k)~ Pk ox o P

/Z(ﬁ +ick - .01) (ﬁ ik - .d*”
s e

= F,U[f/.i '.Ol'L* ol A F (x.“/', + i(r).o/\)(.'.\/'l* — Aol *)

— )_(.o}\ + i(')-(/l)(f)\* — i *)] . (3.b)

To obtain Lagrange's equations, we calculate

2 ‘(1)
= — & w? o (4.a) s

- = gy, 4.b
Tl * (‘.o);* 0 (4.b)
S P o . Cy .

‘ “f/(;) = — ¢ A7 o, — 10.H) (5.a) ‘ £ = syl + i) (5.b)
o Co)*

¢ - ’;(;) = gy(w? o, — im) (6.a) L'—R = — g Al + 1w}, (6.b)
A Col*

We get from (4.a) and (4.b) the Lagrange equation relative to &/, which corresponds to (2.a).
Equations (5.a) and (5.b) give

o + i, + Mot o — iu).q}\) =0. (7

By writing the term proportional to A/, in the form (A - 1) &, + ./, and regrouping
terms, we find (2.b). Likewise, (6.a) and (6.b) yield

/Z(,a;/'\ +iwe) + 0 o, — i, = 0 (8)

which can be transformed to give (2.¢).
If we set A =1 in Equations (2), we find independent harmonic-oscillator equations for
the four components «,, «., &, and /. This result is satisfactory, since the Fermi
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Lagrangian (A = 1) is equivalent to the Lagrangian E_’R (A.22), which describes, in the
free-field case, four independent harmonic oscillators. Note also that by expanding (3.b) we
get

Lell) = Py + (f—lmo(,q/\ A o, A 9)

which demonstrates this equivalence in the case A = 1.

¢) The Lorentz condition (A.16.b) in reciprocal space is
k.o, +T‘=0_ (10)

If this equation is satisfied, the last terms of (2.b) and (2.¢) cancel and Equations (2) in real
space become
OA =0 (11.a) ov =0 (11.b)

which are equivalent to the free-field Maxwell equations in the Lorentz gauge. All the
Lagrangians Lgx(A) then lead to the same equations if the subsidiary condition (10) is
imposed on them. This is not really surprising, in that Lg(A) differs from the standard
Lagrangian by a term proportional to the integral over all space of the square of a quantity
whose value is taken as 0 when the subsidiary condition is imposed in classical theory.

Note finally that the conjugate momentum relative to &/, given in (6.b), is nonzero when
A # 0. Thus, it is possible to perform the free-field quantization and to treat the four
components of the potential symmetrically, starting from Lg(A) with A # 0. The physical
results must evidently be independent of A, but the intermediate calculations can depend on
1t

2. ANNIHILATION AND CREATION OPERATORS FOR SCALAR PHOTONS: CAN
ONE INTERCHANGE THEIR MEANINGS?

We have seen in Part B of this chapter that, in the framework of
covariant quantization, the state space is much larger than the space of
physical states. These latter form a subspace defined by the following
expression derived from the Lorentz condition:

lag —adly > =0. (N

To simplify the notation, we assume here box quantization so that the
continuous index k is replaced by the discrete index i. The difficulty of the
usual canonical quantization is that it leads to a commutator for the scalar
field

lai, ap]l = — 0y 2

is> Yjs ij

whose sign differs from the usual sign obtained for the transverse and
longitudinal field variables.

To remedy this difficulty, one might be tempted to reverse the roles of
the annihilation and creation operators. One then takes

a, =b; (3.a) dn = b, (3.b)
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where b, and b satisfy the usual relations for the annihilation and
creation operators. The purpose of this exercise is to examine the conse-
quences of this change in the subspace of physical states defined by
condition (1).

a) Consider a state |§) which is a tensor product of states relative to
each mode of the field:

> =1, >®..81Y,>® .. 4

Write, using (3) and (4), the equation satisfied by |¢). Is the vacuum of
scalar and longitudinal photons a physical state from this new point of
view?

b) Supposing |¢,) is expanded in the basis {|n, = n, n, = n’}, de-
noted simply {|n, n")}:

(W > = ¥ blnn)inn> ()

find a recurrence relation between the coefficients b(n, n’). What is b(n,0)
for n > (?

¢) Show that the component |¢{,) of a physical state in this approach
takes the form

Wy = Y b m Z“(i+f'3|n<n+m>> (©)
m=0 n>ov/n'\/m

What is the value of (¢,|¢,>? Discuss this result.

Solution

a) With the new operators introduced in (3), the physical states are solutions of
(a, = b))y =0 for all i. 7

If [¢) is of the form (4), this becomes

(@, =P [¥,> =0 ®)
since a,, and b, act only on the mode /. It is clear that }0.0) is not a solution of (8), since
b 10y = |1). Tt follows that the “ vacuum” state of scalar and longitudinal photons is not a
physical state in this approach.

b) a,|¢,) and b, |§,) are equal to
a/ly, > =Y by uln - 1. n> (9.a)

nmn

by, > = 2’7/1 TN /177;71111, n + 1>, (9.b)
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The use of the condition (8) then gives

bn + Lo + l)\";r-i—"i = h(n, n')\,/')}774:71 (10.a)
b(n,0)

It

0 for n > 0. (10.b)

¢) First of all we find h(n, n') in the case n < n’. Using (10.2), we get

. y'”/! ,
h(n.n) = ——————"hb0.n — n). (1

N to (' —n) !

In the case n” < n, an analogous calculation gives

T _ 5 '
by =N ) (12)

!
\)‘l.

which is zero from (10.b). Using (11) and (12), one shows that the most general form of |, )
is given by (6). Note that since |¢,) must be nonzero, one at least of the »(0, m) is nonzero.
Using (6), we find

(n + m)!
nlm!

<ll/\w>72\h(0m)|2 (13

It is clear that the sum on # leads to an infinite result. In the new approach, the physical
states then have infinite norm. Such a result clearly raises difficulties for the application of
the basic postulates of quantum mechanics (see also the remark of §B.2.5).

3. SOME PROPERTIES OF THE INDEFINITE METRIC

a) Let A be a Hermitian operator in the new metric 4 = A, and let
ju) be an eigenstate of 4 with eigenvalue A. Show that if A is not real, the
new norm of |u). Culu> . is zero.

b) Let {ju,)} be an orthonormal basis in the usual sense, and let

= (u,|y) and v, =Cu,|¢y D be the components of the ket [J) on
u,) defined respectively with the old and the new scalar product. Show
that there exists between the two types of components a relationship
involving the matrix elements of the operator M defining the new scalar
product. Give the new norm C /|y D as a function of ¢, and v,*.

Solution

a) Consider the eigenvalue equation

Aludy=rlud 43
and the adjoint equation in the new sense, which is written

Culd= 7% ul (2)
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since A = A. By taking the new scalar product of both sides of (1) with |u) one gets

CulAlu»d =4 Culud . (3)

On the other hand, Equation (2) gives

Culdlu> =4 Culu . 4

Subtraction of (3) and (4) gives
(A— /%7 ulu> =0 (5)
which shows that if A # A* (that is,1f A is not real), Cu|uD is zero.
h) The relation
Sl =Cu, I M (6)
[see (C.3.b)] implies
W= Cuy Ly D= Cu IM D

:Z<MH!M!MF><MFW>:EF:M,.F(’W (7
P
We have used the usual closure relation
Ylu, > Cu, | =1 (8)
r
and put M, , = (u,|M|u,). Also, since M? =1, one has

G =Lty =Cu | MM|y>
= LUy [ Mluy> Cuy | Mg

= 2 M, Cu,ly > = Y M, 7, 9)
r r
Finally, because M? = 1, Equation (6) imphes that
y p
Cu, | = Cu, | M (10)

so that (8) can then be written

X(Ltp') (u,,leﬂ (11)
b

[see (C.15.b)]. Now insert (11) between C| and |¢D in the new norm Cy |y D . This
gives, using (10),

Cyly o =% cylu,d Cu My > =Y cylu ><u |y
=Y Culy o, ly > =3 vFe,. (12)

P

4. TRANSLATION OPERATOR FOR THE CREATION AND ANNIHILATION
OPERATORS OF A SCALAR PHOTON

Let a (k) and a (k) be the annihilation and creation operators of a
scalar photon with wave vector k satisfying the commutation relation

[a,k). a,(k)] = — o(k — K. (1)
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Consider the operator

T = exp{ jd%[i(k)-&s(k) — A¥(k) ayk)] } (2)
where A(k) is either a classical function of k or a particle operator which

commutes with A(k") and its adjoint A*(k").
a) Show that T is unitary with respect to the new norm

TT =TT = 1. (3)

b) Show that T is a translation operator for ¢, and a_, that is,

i

a(k) + A(K) (4.a)

{ Ta(k) T
a(k) + A¥(k). (4.b)

Ta(k) T

c) The wave vectors k are assumed discrete, and one considers a single
scalar mode with annihilation and creation operators a, and a, with

la,. )= - 1. (5)

The states |n ) with n, photons are defined by

(a] )™
ln > =—=10;> (6.2)
N
where |0, is the vacuum of scalar photons and where
a; = —a, (6.b)

is the usual adjoint of @, in the old positive definite metric. One
limits oneself here to the case where A and A* are c-numbers in T =
exp{Aa, — A*a,}.

Find the expansion in the basis {|n,)} of the state

10,>=T10,>. (7)

Is this a coherent state? What are its old and new norms?

Solution

a) The new adjoint of A(k)a, (k) — A*(k)a, (k) is equal to A*(k)a, (k) — A(k)a, (k), that
1s, its negative. One then concludes that

T = exp{ - (d“k[/ﬁ(k) a(k) — 2%k) a(k)] } (8)

which demonstrates (3).
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b) Since @, and &, commute with their commutator (1). which is a c-number, and since
X and A* self-commute and commute with @, and &, it is possible to apply the identity
(C.64) of Chapter III to (2) and then get

T = exp[ fd“k k) Z\(k)] exp[f [d“k 2¥(k) a\(k)—\ exp[ [d"/\’ | k) IZ‘Z—‘. 9)

Now find the commutator [a,(k), T} The first term of (9) is the only one not commuting
with a (k). Using (1), we get

[a\(k), exp[ ‘ k" Ak E\(k’)—H = — k) CXP[ [d“/\" (k" 5\(1(’)—‘ (10
so that
[ak). T] = ~ k)T (n
so finally
Tak) =a)T + 2k T. (12)

It is sufficient then to multiply both sides of (12) on the right by T to get (4.2), then to take
the new adjoint of (4.a) to get (4.b).

¢) In the case of a single mode, (9) becomes

T = em;—)m‘ — e"“e”'“* c\/:l 2 (13&1)
from which one gets .
T = ¢ /Meltmelrl 2 (13.b)

Note the difference with Equation (C.65) of Chapter II1. One expands the second exponen-
tial of (13.b) in a series. Since «,|0,) = 0. only the first term of this expansion (order () gives
a nonzero result when T acts on the vacuum |0, ). One has then

10> =T10,> =e"2e7 100>

5

=l e 0, ). (14)

Also, using the series expansion of exp(Aa; ) and (6.a) gives

[y = ey 2

n =0y R

,‘511‘>. (15

Since [a,. 4. ] = L. the states [n,) defined in (6.a) are the usual basis states of a harmonic
oscillator. The expansion (15) is proportional to that of the coherent state |A) defined by

alry =722 (16)

{see (C.51) of Chapter III]. However, since the coeﬁclciexl‘~mu1tiplying the sum on #, in (15)
is exp(|A}?/2) and not exp( - [A|?/2). the old norm of |0,) is not equal to 1 but to

0,10,y = e’V (7

In contrast, since T is unitary with respect to the new norm. one has

00,5 =CcO|TT|0, > =010 >=1. (18)



Cy5 Exercises 449

It 1s also possible to get (18) directly starting from the expansion (15) and the orthonormal-
1ization relations

Cadnd =(=1"4,,, (19}

in the new metric [see (C.29)].
Note finally that the fact that |0,) is a coherent state can be established directly from
(4.a). If one applies both sides of this equation to |0,) and if one uses «,[0,) = 0, one gets

Ta,T10, > =4]0,). (20)

It suffices then to apply T on the left to both sides of this equation and to use (3) and (7) to
get

af0,> = 410>, (21

5. LAGRANGIAN OF THE DIRAC FIELD. THE CONNECTION BETWEEN THE
PHASE OF THE DIRAC FIELD AND THE GAUGE OF THE
ELECTROMAGNETIC FIELD

The purpose of this exercise is to show that the Dirac equation can be
derived from a Lagrangian. We will also see that every phase change in the
Dirac field is equivalent to a gauge change in the electromagnetic field.
Consider a complex classical field with four components y,(r), A =
1,2.3.4, whose evolution is derived from a Lagrangian L, = [d’r.%#,
with

[zw*' AR

¢ Z (W o - Vi, — (V)% ‘//;.’)] - me? Z Bow ¥, (1)
where a and 8 are the Dirac matrices (see §A.1).

a) Write the Lagrange equations associated with (1). Show that they
coincide with the Dirac equation of a free particle.
Rewme (1) using the covariant notation y* for the Dirac matrices
= B, y = Ba) and the relativistic adjoint ¢(r) = ¥*(r)y".

b) Consider the Lagrangian density

Z{ "‘<. +qA>W+[<h +q1‘>*$];vu¢}_
lm-zw )

where the A; are the components of an external four-vector potential.
Show that the Lagrange equations associated with (2) correspond to the
Dirac equation of a particle in an external field.
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Show that & is the sum of .#,, and an interaction term .%,. Write the
expression for .%;, and derive the form of the current j* associated with
the Dirac field.

¢) Make the change
Yir) = n e T ®
where F(r, t) is an arbitrary function of r and 7 (and independent of A).
Show that the phase change of  is mathematically equivalent to a gauge

change on the external field potentials.

Solution

a) To establish the Lagrange equations, we calculate

Y ih )
. = -5 W, (4.a)
y -
S f
1‘1‘//: =2 [l// + ¢ Z a,; ,‘l —mAY B, W, (4.b)
oy, ,
Y% lﬁ
. ~ph_ - s 4 ¢
(",((",_ll/;k) ¢ 2(1 )i Wi (4 ¢)
The Lagrange equation (A.52.b) of Chapter II then gives the following equation of motion:
iy — ihe Z o, Vg, +mY B, (5)
One rewrites (5) using p= —is#V and the column vector ¢(r) with components ,(r)

A =1,2,3.4 One gets
iRy = ca - py + pme? (6)

which is indeed the Dirac equation of a free particle.
The Lagrangian density (1) can be written in another form using the Dirac matrices y*
and the relativistic adjoint Y (r) = {*(r)B:

P :1” X[d//“ﬂ] — @) ] - mA (7)

Besides being compact, this form is better adapted to the covariant formalism.
b) One expresses (2) in a form analogous to (1). For this, one introduces the components
(U/¢, A) of the four-potential A*:
, 1l « h
¢ =T YW =) ;{ (—iVﬂ;A‘)wﬁ

* 1
+ [(ﬁ V- quj vl
1 /

Equations (4.a), (4.b), and (4.c) are then replaced by

‘v, } LU e, - mE SR E, w, . (8)

(A'i// _ ﬂl// (9.a)
s
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e i, e i
L gw, - ‘-(;Z‘Vd;/. : (T’V - quj Vi —gA e, ‘I//‘l -
Cy; E = v /

0 F
= qUy, —me® Y B, (9.b)
4 if
m: *7<Z(%);;' v; 9.0
which gives as the equation of evolution for the column vector
ihj = ca-(p— gAY + qU, ¥ + pmcy (10)
which is the Dirac equation of a particle in an external field described by the potentials A,
and U,.
Starting from (2) and (7), we rewrite & in the form #=%,, +.%, with
L= = Y A5 (11.a)
u
7R = equr) 3 ). (11.b)
¢) The transformation (3) gives
no. ko R oo
T’tuwAJ—i’ruw,-’.fq((uF)w,»]e -, (12)

By putting this result as well as (3) in (2) we get a new Lagrangian density. This density is
identical with the one which would be obtained by making the gauge change (A;) = A —
d, F on the Lagrangian density (2).

6. THE LAGRANGIAN AND HAMILTONIAN OF THE COUPLED DIRAC AND
MAXWELL FIELDS

Consider a field whose Lagrangian density is defined by (1) of Exercise

a) By following the procedures of Exercises 6 and 7 of Chapter II,
show that the Hamiltonian of the Dirac field is of the form

Hy :J‘d‘;r /121’ YHr) (coy, - p + Bix me?) i ,(r) . ()
What is the momentum P of such a field?
b) Consider the system made up of interacting Dirac and electromag-

netic fields. Show that the Lagrangian of the coupled system can be taken
equal to

v -~ %Z[_w”—ibm ~’§<D:Jnﬂ - mczw} -

2
— o5 LA @A) @
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where D, = d, + 194, /h. What condition should be imposed on the
components A, of the potential?

¢) What is the Hamiltonian associated with (2)?

Solution

a) The Dirac Lagrangian has a form analogous to the Lagrangians studied in Exercises 6
and 7 of Chapter II. For these exercises the Lagrange equations are of first order in time,
which proves that there are redundant dynamical variables. We have shown that for a
Lagrangian density of the form

ih ¢ ; .
TZ(‘//,* v, - l//;* 11/,‘)* /(lll,l//,*) (3

the Hamiltonian density is f(¢,.¢¥). The same procedure applied to &), leads to a
Hamiltonian

Hy = [dj,‘{( - i) S Qyra,, Vg, - (VR o e md T yEb,, 0, }44)

By integrating the second term in the brackets by parts, we find, since the fields are zero at
infinity, a term equal to the first term in the brackets, so that

H, = (d S U= i cha, Vo, +mgrf, v, ], (5)

Replacing —1AV by p, we get the required expression (1).

The treatment of part d) of Exercise 7 in Chapter II can be immediately used here to find
the momentum. Note that this treatment, which concerns the momentum of the Schridinger
field, does not involve the explicit form of the density f (¢, ¢¥) of (3). The demonstration
given for the Schrddinger field can thus be applied immediately to the case of the Dirac ficld
and leads to

;
P- [d%{ g T] vy, . (6)

b) The Lagrangian density (2) depends on variables of both the Dirac and clectromag-
netic fields. Since the last term of (2) depends only on the radiation field. it does not play any
role in the Lagrange equations for the Dirac field. Now the other term of % between
brackets is identical to that given in (2) of Exercise 5. The same calculation as was made
there shows that the Lagrange equation of ¢ can be written

= ca - (p~ gAY+ gUy + P’y 7
and coincides with the Dirac equation in the presence of an electromagnetic field described
by the potentials A and U.

Consider now the Lagrange equations for 4,. We regroup the terms of (2) involving the

electromagnetic field variables. This gives

YA (8)
Pt

r\)] "

i .
- ZI A, = &
u

with j* = cqyy™y. The density (8) is the same as that used in §A.1.h of Chapter V. The

same procedure as the one followed in §A.1.c shows that the Lagrange equations for 4, are
[

g4, = Ty 9

£y €
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They coincide with the Maxwell field equations in the presence of sources j, if the 4, also
satisfy the Lorentz condition ¥, 9, 4* = 0.

Thus the Lagrangian density (2), supplemented by the Lorentz condition, leads to
the Dirac equation for ¢ in the presence of the field 4, and to the Maxwell equations of the
field A4, in the presence of the sources ;* = cqyy*y. It therefore correctly describes the
dynamics of the coupled Maxwell and Dirac fields and can be taken as the starting point for
the formulation of electrodynamics in the Lorentz gauge.

¢) Since &, does not depend on the velocities A and U of the variables of the Maxwell
field, the calculation for the conjugate momenta II, and II, of 4, and A, made in §A2.4
remains valid and gives

f,=¢4 (10.2)

i

I, = - &, A

5

= (10.b)
It is then possible to reexpress /i, and A, in the density (2) as functions of I, and II. In
addition. the density (2) has, as far as ¢, and ¥} are concerned. a structure analogous to
that of (3):

"

¥ =

o] =

PR U, — gt d,) — gl E ACTL AL, an

By following the same procedure as in Exercises 6 and 7 of Chapter II, one then shows that
the Hamiltonian density associated with (11) is

Il

o= A4 T A+ g, g AL AT

l(n2 - 02 + g0y, Yi AL AT, (12)

&0

By expressing g using (2), (11), and (10) one then gets

H=H,+ Hg + H, (13
where Hj, is given in (1), where

Hy =22 [d"r P M 4 AV x A — = 12— ) (14)

o £

[which, after transformation into reciprocal space. is in agreement with the expression
derived from (A.27) and leads to (A.64) when reexpressed in terms of normal variables], and
where

H, = (d»‘rz,“ A, =4 [d%z B(r) i) A (). (13)
. # . #

Note finally that, as in e) of Exercise 7 of Chapter 11, canonical quantization is achieved
by associating two operators with §,(r) and ¢} (r') whose commutator or anticommutator is
8 »-8(r — r'). The commutator leads to an energy unbounded below, so that it is necessary to
take the anticommutator, which gives

[P0, 9, ()], =9, or—T1). (16)

We then justify, from the Lagrangian formalism, the Hamiltonian and the anticommutation
relations used in §§Ay.2. Ay.3, serving as the starting point for relativistic quantum
electrodynamics in the Lorentz gauge.
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7. DIRAC FIELD OPERATORS AND CHARGE DENSITY. A STUDY OF SOME
COMMUTATION RELATIONS

Let ¥,(r) be the components of the quantized Dirac field at point r,

and
p(ry =gy, ¥, (r) ¥,(r) (1
A

the charge density operator at point r.

a) Using the anticommutation relations between the field operators
¥, (r) and ¥, (r'), establish that

[p(r), p(r)] = 0. 2
b) Consider the operator

¢

g jd% o(r) S(r) 3)

where p(r) is defined in (1) and where S(r), which can be a radiation
operator, commutes with the field operators ¥,(r) and ¥, (r'). Show that

[X. %,00) = % S) ¥.(r) (4.2)

(X w0l =-Lsowm. 4.b)

¢) Assume that S(r) commutes with S(r’), and take

T = et (5)
Show that
TY(nT ' = exp[iihc S(r)} Y. (r) (6.a)
TY (nT '= exp[— 1%( S(r)} Y(r). (6.b)
Solution

@) The anticommutation relations (32) of Complement Ay permit us to write
PO p(r) = ¢* 3 X PN W0 W) W) =
= - @Y YW ) L) LA + g Yo -y ¥ m e ()

We anticommute ¥, (r) and ¥, (r') as well as W, (r) and ¥y (r) in the first term of (M),
which gives a double sign change and thereby no sign change, and then anticommute ¥ ()
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and ¥,.(r"). This gives

p(r) p(r) = p(r') p(r) — ¢ Y oe — vy [¥,7(r) P,() — ¥V, (D P (], (8)

i

On account of the delta function 8(r — r’), we can replace r’ by r in the bracket of the last
term of (8), which shows that it is zero and gives (2).

b) Since S commutes with the field operators,
‘

7 [ d*r Sy [pr). ¥, (0 ]. 9)

(X ¥,n] =
Now, the anticommutation relations (32) of Complement A, let us write

PIEYW,(0) =4 3 ¥, (1) W Ar) Win = = ¢ 2 ¥, (0) 9,0 ¥ (r)

=¥npr) — ¢ 3, dr- )Yy, () (10)

—that is, finally,

[p(r). ,(r)] = — ¢d(r — ) ¥ (1). (1Y

It suffices then to substitute (11) in (9) and to integrate over r’ to get (4.a). An analogous
procedure lets us get (4.b).
¢) Start with the identity

YW e Y = w0 + [IX.W,0] + 7—1—,[0&" (X, ¥, + (12)

From (4.2). the first commutator of (12) is igeS(r) ¥, (r) /h. Since S(r) commutes with S(r"),
the double commutator is simply

7 9 sery [ix. wom1) (13)

2!
2
A

One recognizes in the braces the series expansion of expligeS(r)/h], which demonstrates
(6.2). An analogous procedure gives (6.b).

as can also be found starting from (4.a). We get then

eV (e Y = l[/;(r)%, 1 + 1%(b(r) + -2—'[— S(r)
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References to Exercises are distinguished by an “e” after the page number.

A

Absorption (of photons), 316, 325, 338e,
344e. 348¢, 349¢
Action:
for a discrete system, &1
for a field, 92
functional derivative, 128
principle of least action, 79, 81
for a real motion, 134, 152¢
Adiabatic (switching on), 299
Adjoint (relativistic), 411
Angular momentum, see also Multipole, ex-
pansion
conservation, 8, 139, 200
contribution of the longitudinal electric
field, 20, 45
cigenfunctions for a spin-1 particle, 53
for the field + particle systems, 8, 20, 118,
174, 200
for a general field, 152¢
for a spinless particle, 137
for a spin-1 particle, 49
of the transverse field, 20, 27, 47
Annihilation and creation operators, see also
Expansion in ¢ and «'; Translation
operator
a, and a, operators, 394, 429
a, and a, operators, 391
anticommutation relations, 163¢, 414
commutation relations, 121, 171, 391
for electrons and positrons, 414, 433
evolution equation, 179, 217, 249¢, 420
for photons, 33, 121, 294
for scalar photons, 381, 391, 443, 446¢
Antibunching, 211
Anticommutation relations:
for a complex field, 98
for the Dirac field, 414, 415, 453e, 454¢

and positivity of energy, 99, 416, 440,
453¢

for the Schrodinger field, 99, 162e
Antihermiticity, see Scalar potential
Antiparticle, 187, 413, 433
Approximation:

long wavelength, 202, 269, 275, 304, 342¢

nonrelativistic, 103, 122, 200
Autocorrelation, 229

B

Basis:

in reciprocal space, 25, 36

of vector functions, 51, 55
Bessel:

Bessel functions, 345¢

spherical Bessel functions, 56, 71le
Born expansion, 300
Bose-Einstein distribution, 234e, 238¢
Bosons, 99, 16le, 187
Boundary conditions, see Periodic boundary

conditions

C

Canonical (commutation relations), see also
Commutation relations; Quantization
(general)

for a discrete system, 89, 90, 147e, 155e,
258
for a field, 94, 98, 148, 158e, 380

Center of mass, 232e, 342e

Change, see also Gauge: Lagrangian
(general); Transformation

of coordinates, 84, 88

of dynamical variables, 86, 260

of quantum representation, 260, 262
Characteristic functions, 236e
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Charge, see also Density
conservation, 7, 12, 108, 368, 411, 416, 421
total, 416
Charge conjugation, 438
Classical electrodynamics:
in the Coulomb gauge. 111, 121
in the Lorentz gauge, 364
in the Power-Zienau-Woolley picture,
286
in real space, 7
in reciprocal space, 11
standard Lagrangian, 100
Coherent state, see Quasi-classical states of
the field
Commutation relations:
canonical commutation relations for an
arbitrary field, 94, 98, 148e
canonical commutation relations for a dis-
crete system, 89, 147¢, 155¢, 258
covariant commutation relations, 381, 382,
391
for clectromagnetic ficlds in real space,
120, 173, 230e
for electromagnetic fields in reciprocal
space, 119, 145, 380
of the fields with the energy and the mo-
mentum, 233e. 383, 417
for free fields in the Heinsenberg picture,
223, 355¢, 382
for the operators a and a”, 34, 171, 241e,
391, 394, 443¢
for the operators ¢ and a, 391, 395
for the particles, 34, 118, 145, 171
Complex, see Dynamical variables: Fields
(in general)
Compton:
scattering, 198
wavelength, 202
Conjugate momenta of the electromagnetic
potentials:
in the Coulomb gauge, 115, 116, 143
in the Lorentz gauge, 369
in the Power—Zienau-Woolley representa-
tion, 289, 291, 294
Conjugate momenta of the particle coordi-
nates:
in the Coulomb gauge, 20, 115, 143
in the Géppert—Mayer representation, 270
in the Henneberger representation, 276
for the matter field, 157e
in the Power-Zienau-Woolley representa-
tion, 289, 290, 293
transformation in a gauge change, 267

Index

Conjugate momentum (general):
of a complex generalized coordinate, &8,
96, 154¢
of a discrete generalized coordinate, 83,
147e, 256
of a field, 93, 96, 148
in quantum mechanics, 258, 266
transformation in a change of generalized
coordinates, 85
transformation in a change of Lagrangian,
257
Conservation:
of angular momentum, 8§, 139, 200
of charge, 7, 12, 108. 368, 411, 416, 421
of energy, 8. 61e, 137, 200
of momentum, 8, 6le, 138, 200, 232¢
Constant of the motion, 8§, 6le, 134, 152¢,
200, 370
Contact interaction, 42
Continuous limit (for a discrete system), 126,
147e
Convolution product, 11
Correlation function, 181, 191, 227. See also
Intensity correlations
Correlation time, 191
Coulomb, see also Coulomb gauge; Energy:
Scalar photons
field, 16, 122, 172, 295
interaction, 18, 122, 330, 401, 426, 435
interaction by exchange of photons, 403
potential, 16, 67¢, 172, 407
self-energy, 18, 7le, 201
Coulomb gauge, see also Hamiltonian
(total); Lagrangians for eclectrodynam-
ics; Transformation
definition, 10. 113
electrodynamics in the Coulomb gauge.
10, 113, 121, 169. 439
relativistic Q.E.D. in the Coulomb gauge,
424, 431
Counting signals, see Photodetection signals
Covariant:
commutation relations, 391
formulation, 361
notation and equations, 10, 17, 364, 411,
449¢
Covariant Lagrangians:
for classical particles, 106
for coupled electromagnetic and Dirac
fields, 451e
for the Dirac field, 449
for the electromagnetic field (standard La-
grangian), 106, 365
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Fermi Lagrangian, 366
interaction Lagrangian, 106, 365
in the Lorentz gauge, 365, 369, 44le
Creation operator, see Annihilation and cre-
ation operators
Cross-section, see Scattering
Current:
density, 7, 101, 115, 410, 419
four-vector, 10, 365, 411
of magnetization, 284
of polarization, 284
Cutoff, 124, 190, 200, 287

D

d’Alambertian, 10, 367
Damping (radiative), 7le, 76e
Darwin term, 440
Delta function (transverse), 14, 36, 38, 42,
64de, 120, 173, 231¢
Density. see also Quasi-probability density
of charge, 7, 101, 309, 410, 419, 434, 454¢
of current, 7, 101, 115, 410, 419
Hamiltonian. 93, 106, 147e, 158, 370
Lagrangian, 91, 101, 106, 113. 147¢, 157,
167e, 365, 369, 44le
of magnetization, 42, 284, 285, 292
of polarization, 281, 292. 308, 329
Diamagnetic energy, 290, 293
Dipole—dipole interaction:
electric, 313
magnetic, 43
Dipole moment, see Electric dipole; Mag-
netic dipole moment
Dirac, see also Matter field; Spinors
delta function, 94
equation, 408, 449¢, 452¢
Hamiltonian, 410
matrices, 409
Discretization, 31
Dispacement, 282. 291, 292, 308, 310
Dynamical variables:
canonically conjugate, 34, 86, 93, 257. 258,
369
change of dynamical variables in the
Hamiltonian, 86. 260
change of dynamical variables in the La-
grangian, 84
complex dynamical variables, 87, 90
for a discrete system, 81
for a field, 90
redundancy, 109, 113, 154e, 157¢, 362
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E

Effective (Hamiltonian), 435, 438
Einstein, 204
Electric dipole:
approximation, 270
interaction, 270, 288, 304, 306, 312, 313,
342
moment, 270, 288, 306, 343
self-energy, 312
wave, Tle
Electric field, see also Electromagnetic field:
Expansion
in the Coulomb gauge, 117, 122, 172
longitudinal, 15, 64e, 117. 172, 283
of an oscillating dipole moment, 71e, 353e
in the Power-Zienau-Woolley picture,
295
total, 66e, 117, 172, 291, 295, 310, 330,

355e
transverse, 21, 24, 27, 32, 6de, 117, 171,
287, 295, 310

Electromagnetic field, see also Expansion in
normal variables: External field;: Quan-
tization of the electromagnetic field

associated with a particle, 68¢

free, 28, 58, 181, 221, 230e, 241e

mean value in the indefinite metric, 396
in real space, 7

in reciprocal space, 12

tensor F*¥, 17, 106, 365, 378

Electromagnetic potentials, see also Free

(fields, potential); Gauge
covariant commutation reactions, 382
definition and gauge transformation, 9
evolution equations, 9, 10, 366, 367
four-vector potential, 10, 364, 376
mean value in the indefinite metric, 396,
406
retarded, 66e
Electron, see also Matter field
classical radius, 75¢
clastically bound, 74e
g-factor, 439
Electron—positron pairs, 123, 413, 417
Elimination:
of a dynamical variable, 85. 154¢. 157¢
of the scalar potential, 111
Emission (of photons), 344e, 348e, 349¢
Energy, see also Hamiltonian: Self-energy
conservation of, 8, 6le, 137, 200
Coulomb energy, 18, 114, 173, 283, 401,
403, 426
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Energy (Continued )
of the free field, 183, 378
negative energy states, 413
of the system field + particles, 8, 19, 116
of the transverse field, 26, 31
Equations, see Dirac; Hamilton’s equations;
Heisenberg: Lagrange's equations:
Maxwell equations; Newton-Lorentz
equations; Poisson; Schrodinger
Equivalence:
between the A + p and E - r pictures, 272,
296, 316, 321, 337e, 356e
between the A -p and Z -+ vV pictures,
349¢
between relativistic Q. E.D. in the Lorentz
and the Coulomb gauges, 424
between the various formulations of elec-
trodynamics, 253, 300, 302
Expansion in @ and ¢* (orin ¢ and a):
of the electric and magnetic fields, 171,
241e
of the four-vector potential, 391
of the Hamiltonian and momentum in the
Lorentz gauge. 382, 391
of the Hamiltonian and momentum of the
transverse field, 172
of the transverse vector potential, 171
Expansion in normal variables:
of the electric and magnetic fields, 27, 28.
32
of the four-vector potential. 372, 376
of the Hamiltonian and momentum in the
Lorentz gauge, 378, 379
of the transverse field angular momentum,
27. 48
of the transverse field Hamiltonian, 27, 31
of the transverse field momentum, 27, 31
of the transverse vector potential, 29, 31
External field, 141, 172, 178, 180, 198. See
also Hamiltonian for particles in an ex-
ternal field: Lagrangians for electrody-
namics
External sources (for radiation), 24, 219, 314,
370, 372, 400. 418

F

Factored states, 207
Fermi:
golden rule, 323
Lagrangian, 366
Fermion, 99, 16le, 413, 414
Ficlds (in general), see a/so Angular momen-
tum: Enerev: Hamiltonian (egeneral

Index

considerations); Lagrangian (general);
Momentum; Quantization (general)
complex, 95
real, 90
transverse and longitudinal, 13, 37
Fierz, see Pauli-Fierz-Kramers transforma-
tion
Final, see Initial and final states of a process
Fock space, 31, 175
Fourier transform, 11, 12, 15, 56, 97
Four-vector:
current, 10, 365, 411
field energy-momentum, 379
potential, 10, 364, 376
Free (fields, potentials), 28, 58, 183, 205,
373, 376, 382, 414
Fresnel mirror, 208
Functional derivative, 92, 126
G
Gauge, see also Coulomb gauge, Lorentz
gauge: Poincaré gauge
gauge transformation and phase of the
matter field, 167e, 449¢
invariance, 8, 17, 107, 269
transformation, 9, 13, 108, 255, 267, 270,
331. 368, 375, 397
Generalized coordinates:
change of, 86, 260
complex, 87, 88

real, 81, 84
Géppert-Mayer transformation, 269, 275,
304

Ground state:
of the quantized Dirac field, 417
of the radiation field, 186, 189, 252¢, 385,
386, 394

H

Hamiltonian (general considerations), see
also Effective, (Hamiltonian)
with complex dynamical variables, 88, 97,
154e. 157¢
for a discrete system, 83, 147e
for a field, 93, 97, 148
Hamiltonian and energy, 83, 136, 146e
in quantum theory, 89, 259
transformation of, 258, 261, 263
Hamiltonian of the particles:
Dirac Hamiltonian, 410
expression of, 144, 197
Pauli Hamiltonian, 432
physical meaning in various representa-
tions. 271. 297
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of the quantized Dirac Field, 415
for two particles with opposite charges.
232e
for two separated systems of charges, 313,
328
Hamiltonian for particles in an external field:
for a Dirac particle, 410
electric dipole representation (E-r), 271,
304, 320
Henneberger picture, 277
for an ion, 342e¢
for the quantized Dirac field, 419
standard representation (A - p), 144, 198,
266, 317
Hamiltonian for radiation coupled to exter-
nal sources:
in the Couilomb gauge, 218
in the clectric dipole representation, 314,
353e
in the Lorentz gauge, 370, 400, 418
Hamiltonian (total):
in the Coulomb gauge. 20, 33, 116, 138
173, 439
in the Coulomb gauge with external fields
144,174, 198
of coupled Dirac and Maxwell fields, 419,
431, 451e
in the Power-Zienau-Wooley picture,
289, 292, 295, 329
Hamilton’s equations:
for a discrete system, 83
for a field, 94, 132, 371
Heaviside function, 226
Heisenberg:
equation, 89
equations for ¢ and «', 179, 217, 249,
420
equations for the matter fields, 99, 16le,
420
equations for the particle, 177
picture, 89, 176, 185, 218, 221, 382
relations, 241e, 248¢
Henneberger transformation, 275, 344e, 349
Hilbert space, 89, 387
Hole theory, 413
Hydrogen atom:
Lamb transition, 327
Ls—2s two-photon transition, 324, 338e

)

)

I

Indefinite metric, see also Scalar potential
definition and properties, 387, 391, 445¢
and probabilistic interpretation, 390, 392
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Independent variables, 95, 109, 121, 362.
See also Redundancy of dynamical
variables

Initial and final states of a process, 264, 271,
296, 300, 302, 317, 326, 337¢

Instantaneous, see also Nonlocality

Coulomb field and transverse field, 16, 21,
6de, 67e, 122, 291, 292
interactions, 18, 122, 313. 330

Intensity correlations, 186

Intensity of light, 185

Interaction Hamiltonian between particles
and radiation:

in the Coulomb gauge, 197, 232¢

in the electric dipole representation, 271,
307, 312, 315

in the Power~Zienau-Woolley representa-
tion, 290, 292, 296, 329

in relativistic QE.D., 419

Interactions, see Contact interaction:
Coulomb; Dipole-dipole interaction;
Electric dipole; Instantaneous; Mag-
netic dipole moment; Quadrupole elec-
tric (momentum and interaction): Re-
tarded: Hamiltonian

Interference phenomena:

with one photon, 208, 210
quantum theory of light interference, 204
with two laser beams, 208, 212
with two photons, 209, 211
Interferences for transition amplitude, 213
Invariance, see also Covariant
gauge invariance, 9, 107, 167, 267
relativistic invariance, 10, 15, 106, 114
translational and rotational, 134, 153e,
200, 370

Ion (interaction Hamiltonian with the radia-

tion field), 342e

K

Kramers, see Pauli-Fierz-Kramers trans-
formation
Kronecker (delta symbol), 94, 148¢

L

Lagrange’s equations:
with complex dynamical variables, 87, 96,
154e
for a discrete system, 82, 129, 147e
for the electromagnetic potentials, 104,
142, 150e, 151e, 366
for a field, 92, 96, 131, 147¢, 150e
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Lagrange's equations (Continued )

for a matter field, 157e, 167¢, 367, 449¢
for the particles, 103, 142, 151e
Lagrangian (general), see also Density, La-
grangian; Functional derivative; Matter
field
with complex dynamical variables, 87, 95,
154¢, 157¢
of a discrete system, 81. 147¢
elimination of a rcdundant dynamical
variable. 84, 154e, 157¢
equivalent Lagrangians, 82. 92, 108, 256
of a field, 91. 95, 147¢
formalism, 79, &1
linear in velocities, 154e, 157¢
Lagrangians for electrodynamics, see also
Covariant Lagrangians; Standard La-
grangian
in the Coulomb gauge, 113, 137
with external fields, 142, 143, 266, 271,
449¢
in the Power-Zienau-Woolley picture,
287
Lamb:
shift, 191
transition, 327
Least-action principle. 79, 81
Light intensity, 185
Linear response, 221, 352e
Linear susceptibility, 221, 352e
Locality, 12, 14, 15, 21, 103, 291. See also
Instantaneous; Nonlocality
Localized systems of charges, 281, 304, 307
Longitudinal:
basis of longitudinal vector functions, 53
contribution of the longitudinal electric
field to the energy, momentum and an-
gular momentum, 17, 19, 20
electric field, 15, 64e, 172, 283
normal variables, 374
photons, 384, 430
vector fields. 13
vector potential. 112, 255
Longitudinal vector potential:
in the Coulomb gauge. 16, 113
in the Lorentz gauge, 22
in the Poincaré gauge, 332
Lorentz equation, 104, 178. See also Lorentz
gauge; Subsidiary condition
Lorentz gauge, see also Subsidiary condition
classical electrodynamics in the Lorentz
gauge, 364
definition, 9

Index

relativistic QE.D. in the Lorentz gauge,
361, 419, 424, 453¢

M

Magnetic dipole moment:
interaction, 43, 288
orbital, 288
spin, 44,197, 439
Magnetic field, 21, 24, 27, 32, 42, 118, 171.
See also Expansion
Magnetization:
current, 284
density, 42, 284, 292
Mass:
correction, 69
rest mass energy. 432
Matter field:
Dirac matter field, 107, 366, 408, 414, 433,
451e, 454¢
quantization, 98, 16le, 361, 414
Schrédinger matter field, 157e, 161e. 167¢
Maxweli equations, see also Heinsenberg:
Normal variables of the radiation
covariant form, 17, 366
for the potentials, 9, 10, 366
quantum Maxwell equations, 179
in real space, 7
in reciprocal space. 12, 21
Mean value in the indefinite metric, 389,
396, 398, 406
Mechanical momentum, 20, 177, 271, 290
Mode, 24, 27, 374. See also Normal mode,
Normal variables of the radiation; Ex-
pansion
Momentum. see also Commutation: Expan-
sion in normal variables; Expansion in
a and ¢” (orin ¢ and a)
conservation, 8, 6le, 138, 200
contribution of the longitudinal field, 19,
20
of the Dirac field, 451e
of the clectromagnetic field in the Lorentz
gauge, 370, 379
of a general field, 152¢
momentum and velocity, 20, 177, 271, 290
for a particle, 20, 177
of the particle + field system, 8, 20, 118,
139, 174, 199
of the Schrodinger field, 158
of the transverse field, 19, 27, 31, 172,193,
188
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Multiphoton amplitudes (calculations in var-
10us representations), 316. 325, 338e,
344¢, 348c, 349¢

Multipole:

expansion, 287
waves, 45, 55, 58, 60

N

Negative energy states, 413
Negative frequency components, 29, 184,
193, 422
Newton-Lorentz equations, 7, 104, 178
Nonrelativistic:
approximation, 103, 122, 200
limit, 424, 432, 439
Nonresonant processes, 325, 356e
Nonlocality, 14, 15, 21, 151e. See also In-
stantancous: Locality
Norm:
in the indefinite metric, 388, 445e. 447¢
negative, 385
Normal mode, 24, 27, 374. See also Normal
variables of the radiation: Expanion
Normal order, 185, 195, 237¢
Normal variables of the radiation, see also
Expansion in normal variables
a, and a, normal variables, 375, 376, 378
analogy with a wavefunction, 30
definttion and expression, 23, 25, 29, 371
discretization, 31
evolution equation, 24, 26, 32, 66e. 219,
371,372
Lorentz subsidiary condition, 374
quantization, 33, 171
scalar and longitudinal normal variables,
372,374,379
transverse normal variables, 25, 29, 374

0

Observables, see Physical variables
Operators in the indefinite metric:
adjoint, 388
eigenvalues and eigenfunctions, 389, 445¢
hermitian, 388, 445¢
Order:
antinormal, 237¢
normal, 185, 195, 238e
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P

Parseval-Plancherel identity, 11
Particles see Conjugate momenta of the par-
ticle coordinates; Matter field: Hamil-
tonian for particles in an external ficld
Particle velocities:
in the Coujomb gauge, 117. 177
in the Goppert—Mayer approach, 271, 306
in the Henneberger approach. 277
in the Power-Zienau-Woolley approach.
290, 295
Pauli:
exclusion principle, 163e, 413, 416
Hamiltonian, 432
matrices, 410, 437
Pauli- Fierz—Kramers transformation, 278,
429
Periodic boundary conditions, 31
Phase:
of an electromagnetic field mode, 208, 212,
243¢
of a matter field and gauge invariance,
167¢, 449¢
Photodetection signals. see also Interference
phenomena
double counting signals, 185, 209, 214
single counting signals, 184, 188, 206. 213
Photon, see also Annihilation and creation
operators; Bose-Einstein distribution;
Interference phenomena; S-matrix:
States of the radiation field; Wave—par-
ticle duality
as an eclementary excitation of the quan-
tized radiation field, 30, 187
longitudinal and scalar photons, 384, 392,
403, 425, 430, 443e, 446¢
nonexistence of a position operator, 30,
50. 188
photon number operator, 187
single-photon states, 187, 205. 208, 210,
385
transverse photons. 186, 385
wavefunction 1in reciprocal space, 30
Physical meaning of operators:
general. 259, 269
in the Gdppert-Mayer approach, 271, 306,
310
in the Henneberger approach, 277. 345¢
in the Power-Zienau-Woolley approach,
290. 292
Physical states. 384, 394, 396, 405, 423, 430,

443e. See ulso Physical meaning of
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Physical states (Continued )
operators; Physical
sidiary condition

Physical variables. see also Angular momen-
tum; Electric field; Energy: Magnetic
field: Momentum: Particle velocities:
Photodetection signals; Physical mean-
ing of operators; Position operator

in classical theory. 257

corresponding operators in various repre-
sentations, 116, 117, 271, 277, 294, 306,
310

mean value in the indefinite metric, 396

in quantum theory, 259. 296

transformation of the corresponding oper-
ators, 260, 263

Planck, 1

Poincaré gauge, 331, 333

Poisson:

brackets, 86

equation, 10, 345¢
Polarization:

current, 284

density, 281, 292, 308, 329
Polarization of the radiation:

polarization vector, 25, 376

sum over transverse polarizations, 36

Position operator, see also Photon; Transla-

tion operator
in the Henneberger approach, 276, 345¢
for the particles, 33, 118, 258
Positive:
positive energy states, 412
positive frequency components, 29, 184,
193, 422

Positron, 408, 413

Potential, see Longitudinal vector potential;
Scalar potential; Transverse vector po-
tential

Power-Zienau-Woolley
280, 286, 328, 331

P-representation, 195, 206, 211, 236e, 251e

Processes, see Absorption (of photons):
Emission (of photons); Multiphoton
(amplitudes (calculations in various rep-

variables; Sub-

transformation.

resentations); Nonresonant processces;
Resonant, processes; Scattering.
S-matrix

Q

Quadrupole electric (momentum and inter-
action), 288

Index

Quantization (general), see also Matter field
with anticommutators, 98, 162e, 453e
canonical quantization, 34, 89, 258, 380
for a complex field, 98, 99, 16le
for a real field, 94, 148¢
second quantization, 414, 439
Quantization of the electromagnetic field:
canonical quantization in the Coulomb
gauge. 119, 144

canonical quantization in the Power—
Zienau-Woolley representation, 294

covariant quantization in the Lorentz
gauge, 380, 383, 387, 391

elementary approach, 33

methods, 33, 34
Quantum electrodynamics (Q.E.D.):
in the Coulomb gauge, 169
in the Power-Zienau-Woolley picture,
293

relativistic Q.E.D. in the Coulomb gauge,
424, 431

relativistic Q.E.D. in the Lorentz gauge,
361, 419, 424, 453¢

Quasi-classical states of the field, see also

Photodetection signals; Quasi-probabil-
1ty density

definition, 192

graphical representation, 242e

interferences with, 207, 209

production by external sources. 217, 404

properties, 194, 447¢

Quasi-probability density:
suited to antinormal order, 236e, 250e
suited to normal order. 195. 206, 211,

236e. 250e

R

Radiation emitted by an oscillating dipole,
Tle, 352¢
Radiation Hamiltonian:
eigenstates of, 186
as a function of ¢ and ™, 172, 197, 241e,
296, 382
as a function of ¢ and a, 391
as a function of the conjugate variables,
116, 144, 290, 296, 370
as a function of the fields, 18, 312
as a function of the normal variables, 27.
31, 378
in the Lorentz gauge, 370, 378, 382, 391,
398
physical meaning, 292, 312
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Radiation reaction, 68e, 74e
Radiative damping, 71e, 76¢
Raman scattering, 326

Rayleigh scattering, 75e, 198, 326

Reciprocal:
half-space, 102
space, 11, 36

Redundancy of dynamical variables, 109,
113, 154e, 157¢, 362. See also indepen-
dent variables
Relativistic, see also Covariant; Covariant
Lagrangian; Quantum electrodynamics
(Q.E.D)
description of classical particles, 107
Dirac field, 366, 408, 414, 433, 451e, 454¢
modes, 123
Resonant:
processes, 316, 326, 349¢
scattering, 75e

Retarded, see afso Instantaneous
field, 21, 310, 330
potential, 66e

S

Scalar photons, 384, 392, 403, 425, 430, 443e,
446e
Scalar potential, see also Expansion in «
and ¢ (orin « and a); Expansion in
normal variables
absence of a conjugate momentum with
the standard Lagrangian, 109, 362
antihermiticity in the Lorentz gauge, 392
conjugate momentum in the Lorentz
gauge, 369
in the Coulomb gauge, 16, 22, 67¢
elimination from the standard Lagrangian.
111
in the Poincaré gauge, 333
Scalar product:
in a Hilbert space, 387
with the indefinite metric, 387, 395, 445¢
Scattering, see also Compton; Raman scat-
tering; Rayleigh scattering; Thomson
scattering; Transition amplitudes
cross section, 74e, 346¢
nonresonant scattering, 356e
in presence of radiation, 344e
process, 326
resonant scattering, 75¢
Schrodinger:
equation, 89, 157e, 167e, 176. 261, 263
representation, 89, 176, 219

467

Schrédinger field:
Lagrangian and Hamiltonian, 157¢, 167¢
quantization, 16le
Schwarzchild, 79
Second quantization, 414
Selection rules, 199, 233e
Self-energy
Coulomb, 18, 71e, 201
dipole, 312
of the transverse polarization, 290, 329
S-matrix:
definition, 299, 317
equivalence in different representations,
298, 302, 321, 349¢, 356e
for one- and two-photon processes, 317,
349¢
Sources (classical or external), 24, 217, 314,
370, 372, 400, 418
Spectral density, 191
Spin:
magnetic moment, 44, 197, 439
spin—statistics theorem, 99
Spin-1 particle, 49
Spin-orbit interaction, 440
Spinors:
Dirac spinors, 409, 412 433
two-component Pauli spinors, 434
Squeezed states, 245e, 246e, 248, 250
Standard Lagrangian:
difficulties for the quantization, 109
expression, 100
symmetries, 105
State space, see also Subsidiary condition
in the Coulomb gauge, 175
in the covariant formuiation, 385
for scalar photons, 392, 443e
States of the radiation field, see also Physi-
cal states; Quasi-classical states of the
field; Vacuum
factored states, 205, 207
graphical representation, 24le
single-photon states, 187, 205, 208, 210,
385
squeezed states, 243e, 246e, 248e, 250¢
two-photon states, 211
Subsidiary condition:
in classical clectrodynamics, 9, 10, 22, 368,
370, 374, 442¢. 443¢
in presence of interaction, 406, 421, 430
for the quantum free field, 384, 386, 394
Sudden switching-on of the potential, 264,
336e
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Symmetries
and conservation laws, 134
of the standard Lagrangian, 105

T

Thomson scattering, 75e, 198
Transformation, see also Physical variables;
Unitary transformation; entries under
Gauge: Hamiltonian; Lagrangian
of coordinates and velocities, 85
from the Coulomb gauge to the Lorentz
gauge (or vice versa), 63e¢, 425
Goppert—Mayer transformation, 269, 304
Henneberger transformation, 275, 344e,
349¢
Pauli-Fierz-Kramers
278, 429
Power-Zienau-Woolley
280, 287. 328. 331
of the state vector, 261, 263, 268
Transition amplitudes
definition and calculation. 176, 271, 316,
337e, 338e, 346¢
identity in different pictures, 264, 269, 273,
297, 316, 321, 349¢, 356¢
interference between, 213
Transition matrix, 300, 356e
Transition rate, 323
Translation operator:
for the ¢ and ¢ ™ operators, 195, 308
for the ¢ and a operators, 404, 425, 446e
infinitesimal gencrators, 163e, 199, 383,
417
for the momentum of a particle, 305
for the position of a particle, 276
Transverse, see also Expansion; Instanta-
neous: Nonlocality: Photon
basis of transverse vector functions, 25,
37,53
commutation relation for the transverse
field, 119, 223, 230c
delta function, 14, 36. 38, 42, 6de, 120,
173. 231e
displacement, 283, 291, 295, 310
energy, momentum and angular momen-
tum of the transverse field, 18. 19, 20,
27,47, 48, 174, 312
equations of motion of the transverse field,
21

transformation,

transformation,

Index

electric field, 21, 24, 27, 32, 64de, 117, 171,
287, 295, 310

magnetic field, 21, 24, 27, 32, 42, 118, 171

projector onto the subspace of transverse
fields, 37

summation over transverse polarizations,
36

vector field, 13, 50

vector potential, 17, 29, 31, 119, 171, 223,
294, 377, 396

Transverse vector potential, see also Expan

sion; Instantaneous; Nonlocality

commutation relations, 119, 223, 230e

conjugate momentum. 115, 289

gauge invariance, 17

U

Unitary transformation, see also Translation
operator
associated with a change of Lagrangian,
260, 262, 296
associated with a gauge transformation,
268, 271
on the Hamiltonian, 262, 276, 304, 343¢

v

Vacuum, 186, 189, 252e, 385. 386, 394

Vacuum fluctuations. 191, 199. 279

Vector potential, see Longitudinal vector
potential; Transverse vector potential

Velocity, see Particle velocities

w

Wavefunction of the photon, 30, 50. See also
Photon
Wavelength scale, 202. See also Approxima-
tion: Compton
Wave—particle duality, 204, 215
Waves:
multipole waves, 45, 55
traveling plane waves, 28
Woolley, see Power-Zienau-Woolley trans-
formation

Z

Zicnau, see Power-Zienau-Woolley trans-
formation
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